1
|
Zhu YY, He YY, Li YX, Liu CH, Lin W. Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations. Chemistry 2024; 30:e202400842. [PMID: 38691421 DOI: 10.1002/chem.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yuan-Yuan He
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yan-Xiang Li
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Yang M, Li H, Borse RA, Lin SX, Yuan D. A Nickel Anchored Covalent Organic Framework as Unimolecular Metallaphotocatalyst for Visible Light Driver C-P Bond Coupling Reaction. Chemistry 2023:e202303556. [PMID: 38092708 DOI: 10.1002/chem.202303556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/22/2023]
Abstract
The urgent need to develop a sustainable and environmentally friendly method for synthesizing organophosphine compounds is underscored by their extensive applications in organic synthesis, coordination chemistry, medicinal chemistry, and photoelectric materials. Metalated covalent organic frameworks (MCOFs), which seamlessly integrate the inherent photo properties of COF with the catalytic capabilities of metal ions, offer an optimal material for efficient transformation of organics sustainably. In this study, we introduce a simple COF with nickel anchorages (Bpy-COF-NiCl2 ) as a unimolecular metallaphotocatalytic system for effective C-P bond formation. This heterogeneous photocatalyst exhibits superior catalytic performance, achieving yields of up to 95 %, and demonstrates broad substrate tolerance and functional group reactivity. Notably, the metallaphotocatalytic system has demonstrated the capability to process aryl bromides to produce the desired product, a feat not previously reported. Finally, the production and reusability test at the gram scale attests to its superior practicality for designing future organic cross-coupling reactions.
Collapse
Affiliation(s)
- Manqiang Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Huijie Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Rahul Anil Borse
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shao-Xia Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Cheng Y, Li YX, Liu CH, Zhu YY, Lin W. Diaryl Dihydrophenazine-Based Porous Organic Polymers Enhance Synergistic Catalysis in Visible-Light-Driven Organic Transformations. Angew Chem Int Ed Engl 2023; 62:e202310470. [PMID: 37615272 DOI: 10.1002/anie.202310470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Porous organic polymers (POPs) have emerged as a novel class of porous materials that are synthesized by the polymerization of various organic monomers with different geometries and topologies. The molecular tunability of organic building blocks allows the incorporation of functional units for photocatalytic organic transformations. Here, we report the synthesis of two POP-based photocatalysts via homopolymerization of vinyl-functionalized diaryl dihydrophenazine (DADHP) monomer (POP1) and copolymerization of vinyl-functionalized DADHP and 2,2'-bipyridine monomers (POP2). The fluorescence lifetimes of DADHP units in the POPs significantly increased, resulting in enhanced photocatalytic performances over homogeneous controls. POP1 is highly effective in catalysing visible-light-driven C-N bond forming cross-coupling reactions. Upon coordination with Ni2+ ions, POP2-Ni shows strong synergy between photocatalytic and Ni catalytic cycles due to the confinement effect within the POP framework, leading to high efficiency in energy, electron, and organic radical transfer. POP2-Ni displays excellent activity in catalysing C-P bond forming reactions between diarylphosphine oxides and aryl iodides. They increased the photocatalytic activities by more than 30-fold in C-N and C-P cross-coupling reactions. These POP catalysts were readily recovered via centrifugal separation and reused in six catalytic cycles without loss of activities. Thus, photosensitizer-based POPs provide a promising platform for heterogeneous photocatalytic organic transformations.
Collapse
Affiliation(s)
- Yan Cheng
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yan-Xiang Li
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Luster T, Van de Roovaart HJ, Korman KJ, Sands GG, Dunn KM, Spyker A, Staples RJ, Biros SM, Bender JE. Synthesis of diphenyl-(2-thienyl)phosphine, its chalcogenide derivatives and a series of novel complexes of lanthanide nitrates and triflates. Dalton Trans 2022; 51:9103-9115. [PMID: 35666488 DOI: 10.1039/d2dt01570f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthesis of diphenyl(2-thienyl)phosphine, along with its' oxide, sulfide and selenide derivatives, is reported here. These phosphines have been characterized by NMR, IR, MS and X-Ray crystallography. The phosphine oxide derivative was reacted with a selection of lanthanide(III) nitrates and triflates, LnX3, to give the resultant metal-ligand complexes. These complexes have also been characterized by NMR, IR, MS and X-Ray crystallography. Single crystal X-Ray diffraction data shows a difference in metal-ligand complex stoichiometry and stereochemistry depending on the counteranion (nitrate vs. triflate). The [Ln(Ar3PO)3(NO3)3] ligand-nitrate complexes are nine-coordinate to the metal in the solid state (bidentate nitrate), featuring a 1 : 3 lanthanide-ligand ratio and bear an overall octahedral arrangement of the six, coordinated ligands. Our [Ln(Ar3PO)3(NO3)3] ligand-nitrate complexes gave three examples of fac-stereochemistry, where mer-stereochemistry is almost universally observed in the literature of highly related [Ln(Ar3PO)3(NO3)3] complexes. For the Tb complexes, two different arrangements of the ligands around the metal were observed in the solid state for [Tb(Ar3PO)3(NO3)3] and [Tb(Ar3PO)4(OTf)2] [OTf]. [Tb(Ar3PO)3(NO3)3] is strictly nine-coordinate, ligand mer-stereochemistry in the solid state, and [Tb(Ar3PO)4(OTf)2] [OTf] is strictly octahedral, six-coordinate, with a square-planar stereochemical arrangement of the phosphine oxide ligands around the metal.
Collapse
Affiliation(s)
- Troy Luster
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | | | - Kyle J Korman
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Georgia G Sands
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Kylie M Dunn
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Anthony Spyker
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Richard J Staples
- Center for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Shannon M Biros
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - John E Bender
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| |
Collapse
|
5
|
Galushchinskiy A, González-Gómez R, McCarthy K, Farràs P, Savateev A. Progress in Development of Photocatalytic Processes for Synthesis of Fuels and Organic Compounds under Outdoor Solar Light. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2022; 36:4625-4639. [PMID: 35558990 PMCID: PMC9082502 DOI: 10.1021/acs.energyfuels.2c00178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Indexed: 05/19/2023]
Abstract
With photovoltaics becoming a mature, commercially feasible technology, society is willing to allocate resources for developing and deploying new technologies based on using solar light. Analysis of projects supported by the European Commission in the past decade indicates exponential growth of funding to photocatalytic (PC) and photoelectrocatalytic (PEC) technologies that aim either at technology readiness levels (TRLs) TRL 1-3 or TRL > 3, with more than 75 Mio€ allocated from the year 2019 onward. This review provides a summary of PC and PEC processes for the synthesis of bulk commodities such as solvents and fuels, as well as chemicals for niche applications. An overview of photoreactors for photocatalysis on a larger scale is provided. The review rounds off with the summary of reactions performed at lab scale under natural outdoor solar light to illustrate conceptual opportunities offered by solar-driven chemistry beyond the reduction of CO2 and water splitting. The authors offer their vision of the impact of this area of research on society and the economy.
Collapse
Affiliation(s)
- Alexey Galushchinskiy
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Roberto González-Gómez
- School
of Chemistry, Ryan Institute, National University
of Ireland, Galway H91 CF50, Ireland
| | - Kathryn McCarthy
- School
of Chemistry, Ryan Institute, National University
of Ireland, Galway H91 CF50, Ireland
| | - Pau Farràs
- School
of Chemistry, Ryan Institute, National University
of Ireland, Galway H91 CF50, Ireland
| | - Aleksandr Savateev
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Dou Q, Wang T, Cheng B, Li CJ, Zeng H. Recent advances in photochemical construction of aromatic C–P bonds via C–hetero bond cleavage. Org Biomol Chem 2022; 20:8818-8832. [DOI: 10.1039/d2ob01524b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photochemical C–P bond cross-coupling in aromatics via C–X (X = F, Cl, Br, I), C–N bond and C–O bond cleavages with/without photosensitizer were summarized in this review.
Collapse
Affiliation(s)
- Qian Dou
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, China
| | - Taimin Wang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Bin Cheng
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Chao-Jun Li
- Department of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
7
|
Hosseini-Sarvari M, Sheikh H. Reduced graphene oxide–zinc sulfide (RGO–ZnS) nanocomposite: a new photocatalyst for oxidative cyclization of benzylamines to benzazoles under visible-light irradiation. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple route for the preparation of a reduced graphene oxide–zinc sulfide (RGO–ZnS) nanocomposite via one-pot hydrothermal synthesis has been reported.
Collapse
Affiliation(s)
- Mona Hosseini-Sarvari
- Nano Photocatalysis Lab, Department of Chemistry, Faculty of Science, Shiraz University, Shiraz, 7194684795 I.R, Iran
| | - Hossein Sheikh
- Nano Photocatalysis Lab, Department of Chemistry, Faculty of Science, Shiraz University, Shiraz, 7194684795 I.R, Iran
| |
Collapse
|
8
|
Chen Y, Zhang S, Xue Y, Mo L, Zhang Z. Palladium anchored on a covalent organic framework as a heterogeneous catalyst for phosphorylation of aryl bromides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu‐Xuan Chen
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Shuo Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Yu‐Jie Xue
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Li‐Ping Mo
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| |
Collapse
|
9
|
Koohgard M, Hosseini-Sarvari M. Visible-light-mediated phosphonylation reaction: formation of phosphonates from alkyl/arylhydrazines and trialkylphosphites using zinc phthalocyanine. Org Biomol Chem 2021; 19:5905-5911. [PMID: 34132725 DOI: 10.1039/d1ob00848j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we developed a ligand- and base-free visible-light-mediated protocol for the photoredox syntheses of arylphosphonates and, for the first time, alkyl phosphonates. Zinc phthalocyanine-photocatalyzed Csp2-P and Csp3-P bond formations were efficiently achieved by reacting aryl/alkylhydrazines with trialkylphosphites in the presence of air serving as an abundant oxidant. The reaction conditions tolerated a wide variety of functional groups.
Collapse
Affiliation(s)
- Mehdi Koohgard
- Nano Photocatalysis Laboratory, Department of Chemistry, Shiraz University, Shiraz 7194684795, Islamic Republic of Iran.
| | - Mona Hosseini-Sarvari
- Nano Photocatalysis Laboratory, Department of Chemistry, Shiraz University, Shiraz 7194684795, Islamic Republic of Iran.
| |
Collapse
|
10
|
Li RH, Zhao YL, Shang QK, Geng Y, Wang XL, Su ZM, Li GF, Guan W. Photocatalytic C(sp 3)–O/N Cross-Couplings by NaI–PPh 3/CuBr Cooperative Catalysis: Computational Design and Experimental Verification. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | | | - Zhong-Min Su
- College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | | | | |
Collapse
|