Thompson NB, Namkoong G, Skeel BA, Suess DLM. Facile and dynamic cleavage of every iron-sulfide bond in cuboidal iron-sulfur clusters.
Proc Natl Acad Sci U S A 2023;
120:e2210528120. [PMID:
36719911 PMCID:
PMC9963086 DOI:
10.1073/pnas.2210528120]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023] Open
Abstract
Nature employs weak-field metalloclusters to support a wide range of biological processes. The most ubiquitous metalloclusters are the cuboidal Fe-S clusters, which are comprised of Fe sites with locally high-spin electronic configurations. Such configurations enhance rates of ligand exchange and imbue the clusters with a degree of structural plasticity that is increasingly thought to be functionally relevant. Here, we examine this phenomenon using isotope tracing experiments. Specifically, we demonstrate that synthetic [Fe4S4] and [MoFe3S4] clusters exchange their Fe atoms with Fe2+ ions dissolved in solution, a process that involves the reversible cleavage and reformation of every Fe-S bond in the cluster core. This exchange is facile-in most cases occurring at room temperature on the timescale of minutes-and documented over a range of cluster core oxidation states and terminal ligation patterns. In addition to suggesting a highly dynamic picture of cluster structure, these results provide a method for isotopically labeling pre-formed clusters with spin-active nuclei, such as 57Fe. Such a protocol is demonstrated for the radical S-adenosyl-l-methionine enzyme, RlmN.
Collapse