1
|
Dutta B, Ahmed F, Mir MH. Coordination polymers: a promising candidate for photo-responsive electronic device application. Dalton Trans 2023; 52:17084-17098. [PMID: 37916313 DOI: 10.1039/d3dt02768f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The design and synthesis of electrically conductive coordination polymers (CPs) are of special interest due to their applications in the fabrication of many environmentally benign emerging technologies, such as molecular wires, photovoltaic cells, light emitting diodes (LEDs), field effect transistors (FETs) and Schottky barrier diodes (SBDs). Owing to their structural flexibility, easy functionality and adjustable energy levels, CPs are promising candidates for providing a better pathway for superior charge transport. Again, the utilization of visible light as an external stimulus to control and manoeuvre the electrical properties of the CPs is exceptionally motivating for the development of many optoelectronic devices, such as photodetectors, photo-switches, photodiodes and chemiresistive sensors. The applications of such materials in devices will solve questions regarding the energy crisis and environmental concerns. This study provides an overview of the recent advances in the development of photo-responsive CPs and the possibility of their application in developing optoelectronic devices. In this regard, a thorough literature survey was performed and the studies related to the fabrication of photosensitive conducting CPs for applications in optoelectronic devices are listed.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Faruk Ahmed
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Department of Chemistry, Saheed Nurul Islam Mahavidyalaya, Tentulia, West Bengal 743286, India
| | | |
Collapse
|
2
|
Pramanik S, Jana S, Das K, Pathak S, Ortega-Castro J, Frontera A, Mukhopadhyay S. Crystallographic Aspects, Photophysical Properties, and Theoretical Survey of Tetrachlorometallates of Group 12 Metals [Zn(II), Cd(II), and Hg(II)] with a Triply Protonated 2,4,6-Tris(2-pyridyl)-1,3,5-triazine Ligand. Inorg Chem 2023; 62:7220-7234. [PMID: 37130352 DOI: 10.1021/acs.inorgchem.2c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Zn(II) (complex 1), Cd(II) (complex 2), and Hg(II) (complex 3) complexes have been synthesized using a triply protonated tptz (H3tptz3+) ligand and characterized mainly by single-crystal X-ray analysis. The general formula of all of the complexes is (H3tptz)3+·Cl-·[MCl4]2-·nH2O (where n = 1, 1.5, and 1.5 for complexes 1, 2, and 3, respectively). The crystallographic analysis reveals that the anion···π, anion···π+, and several hydrogen bonding interactions play a fundamental role in the stabilization of the self-assembled architectures that in turn help to enhance the dimensionality of all of the complexes. In addition, Hirshfeld surfaces and fingerprint plots have been deployed here to visualize the similarities and differences in hydrogen bonding interactions in 1-3, which are very important in forming supramolecular architectures. A density functional theory (DFT) study has been used to analyze and rationalize the supramolecular interactions by using molecular electrostatic potential (MEP) surfaces and combined QTAIM/NCI plots. Then, the device parameters for the complexes (1-3) have been thoroughly investigated by fabricating a Schottky barrier diode (SBD) on an indium tin oxide (ITO) substrate. It has been observed that the device made from complex 2 is superior to those from complexes 1 and 3, which has been explained in terms of band gaps, differences in the electronegativities of the central metal atoms, and the better supramolecular interactions involved. Finally, theoretical calculations have also been performed to analyze the experimental differences in band gaps as well as electrical conductivities observed for all of the complexes. Henceforth, the present work combined supramolecular, photophysical, and theoretical studies regarding group 12 metals in a single frame.
Collapse
Affiliation(s)
- Samit Pramanik
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sumanta Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Kinsuk Das
- Department of Chemistry, Chandernagore College, Hooghly, West Bengal 712136, India
| | - Sudipta Pathak
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal 721657, India
| | - Joaquin Ortega-Castro
- Department of Chemistry, Universitat de les IllesBalears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les IllesBalears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | | |
Collapse
|
3
|
Yang M, Ding J, Wang X, Chen H, Fu H. The regulation of the withstand voltage performance of ZnO/GaN vertical heterostructures using external electric field and vacancy defects. J Mol Graph Model 2023; 120:108424. [PMID: 36724693 DOI: 10.1016/j.jmgm.2023.108424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
The band gap of the heterostructure determines the withstand voltage. It is very important to regulate the band gap of heterojunctions and to investigate their electrical properties by applying external electric field. Based on density functional theory (DFT), ZnO/GaN vertical heterostructures with two stacking configurations (AB/BA and AB/AB, named H1 and H2, respectively) are constructed. The external electric field and vacancy defects of Zn, Ga, O and N atoms (VZn, VGa, VO and VN) are applied to analyze the electrical properties. The band gap can be tuned from 2.07 eV to 0 eV in H1 and 1.53 eV-0 eV in H2. As the electric field increases, H1 has stronger withstand voltage (-0.84-0.56 V/Å) than H2 (-0.26-0.26 V/Å). In addition, the structures deform obviously with the effect of vacancy defects, but remain stable. The presence of VGa and VN enables H1 and H2 to exhibits metal conductivity and VO change the band types of H1 and H2 from direct to indirect. The results of charge density difference (CDD) prove that a zero potential region and a weak electric field occur at the position of VZn and VO, respectively. Likewise, the external electric field is applied to the defective heterostructures. The bandgap also exhibits strong tunability, and the heterostructure with VO has the largest electric field modulation width. The above results indicate that ZnO/GaN exhibits excellent electrical properties with the influence of VO, which represents potential applications in electronic devices.
Collapse
Affiliation(s)
- Mingya Yang
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, College of Science, Xi'an Shiyou University, Xi'an, 710065, China
| | - Jijun Ding
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, College of Science, Xi'an Shiyou University, Xi'an, 710065, China.
| | - Xiangyu Wang
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, College of Science, Xi'an Shiyou University, Xi'an, 710065, China
| | - Haixia Chen
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, College of Science, Xi'an Shiyou University, Xi'an, 710065, China
| | - Haiwei Fu
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, College of Science, Xi'an Shiyou University, Xi'an, 710065, China
| |
Collapse
|
4
|
Roy S, Dey A, Gomila RM, Ortega-Castro J, Frontera A, Ray PP, Chattopadhyay S. Insight into charge transportation in cadmium based semiconducting organic-inorganic hybrid materials and their application in the fabrication of photosensitive Schottky devices. Dalton Trans 2022; 51:5721-5734. [PMID: 35342921 DOI: 10.1039/d2dt00197g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A coordination polymer (1) and a trinuclear complex (2) have been synthesized using a compartmental N2O2O2' donor Schiff base ligand. Both complexes are characterized using different spectroscopic techniques and their structures are determined using single crystal X-ray diffraction analyses. Energies associated with different non-covalent (S⋯O chalcogen bonds, C-H⋯H-C, C-H⋯I and C-H⋯π) interactions in the solid state of both complexes have been calculated using the Turbomole program. Investigations of electrical conductivity and photosensitivity of both complexes reveal that suitable Schottky diode devices could be fabricated from both complexes. The current vs. voltage plots of the complex based devices have been used to calculate the conductivity under dark and irradiation conditions. In both complexes the charge transportation mainly occurs through space which involves the hopping process. Standard band theory has been used to compare the experimental and theoretical results of optoelectronic measurements. The calculations confirm that both are direct band gap (2.78 and 3.30 eV) semiconductors and that complex 1 exhibits a lower band gap, in line with the experimental results (3.21 and 3.43 eV in 1 and 2, respectively).
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India. .,Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Arka Dey
- Department of Physics, Jadavpur University, Kolkata-700012, India. .,Department of Physics, National Institute of Technology Durgapur, Durgapur-713209, India
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta de Vall demossa km 7, 5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Joaquin Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, Crta de Vall demossa km 7, 5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Vall demossa km 7, 5, 07122 Palma de Mallorca, Baleares, Spain.
| | | | - Shouvik Chattopadhyay
- Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India.
| |
Collapse
|
5
|
Chatterjee T, Dutta B, Roy R, Raza Siddiqui M, Mohammad Wabaidur S, Ataul Islam M, Ahmed F, Mafiz Alam S, Hedayetullah Mir M. Synthesis, Characterization and exploration of supramolecular interactions of a Cu(II) based 1D zig-zag coordination polymer: X-ray structure determination and DFT study. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Diana R, Caruso U, Panunzi B. Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers (Basel) 2021; 13:3712. [PMID: 34771269 PMCID: PMC8588226 DOI: 10.3390/polym13213712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination-decoordination equilibria, "optically innocent" ability to "clip" the ligands in emissive architectures, non-toxicity and sustainability, the zinc (II) cation is a good candidate for building supramolecular smart tools. The review summarizes the recent achievements of zinc-based CPs as stimuli-responsive materials able to provide a chromic response. An overview of the past five years has been organised, encompassing 1, 2 and 3D responsive zinc-based CPs; specifically zinc-based metallorganic frameworks and zinc-based nanosized polymeric probes. The most relevant examples were collected following a consequential and progressive approach, referring to the structure-responsiveness relationship, the sensing mechanisms, the analytes and/or parameters detected. Finally, applications of highly bioengineered Zn-CPs for advanced imaging technique have been discussed.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Ugo Caruso
- Department of Chemical Science, University of Naples Federico II, 80126 Napoli, Italy;
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|