1
|
Adame MY, Wang Y, Shi C, Aziz T, Al-Asmari F, Sameeh MY, Cui H, Lin L. Fortification of pullulan/cassava starch-based edible films incorporated with LC-EO nanoparticles and the application for beef meat preservation. Int J Biol Macromol 2024; 279:135629. [PMID: 39278442 DOI: 10.1016/j.ijbiomac.2024.135629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
A multipurpose food packaging film was created using pullulan and cassava starch as bases and sodium caseinate/zein-loaded Litsea cubeba essential oil nanoparticles as fillers. The study showed that the PS, PDI, Zeta potential and encapsulation efficiency of LC-EO in SC/ZNPs1% were 206.34 nm, 0.28 %, -25.73 mV, and 89.69 %, respectively, indicating even distribution and good stability. FTIR and XRD analysis confirmed hydrogen bond formation and structural changes between nanoparticle-forming materials, while SEM analysis revealed uniform distribution and spherical morphology of SC/ZNPs1%.The study found that the psc4% film showed improved mechanical properties, including an increase in elongation at break from 14.76 % to 19.30 %, and enhanced barrier characteristics, despite a slight decrease in tensile strength from 28.53 MPa to 7.77 MPa. The pcs4% film enhanced hydrophobic characteristics from 39.06 % to 20.91 % and showed inhibition against Staphylococcus aureus and E. coli O157:H7 at 28 mm and 23 mm inhibition zones, respectively, with improved antioxidant properties (76.16 %), effectively reducing bacterial populations, color, texture, and pH change and lipid oxidation in fresh beef for up to seven days. The psc4% film is a promising new active antibacterial and antioxidant food-packaging material.
Collapse
Affiliation(s)
- Mawardi Yusufe Adame
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Food Sciences and Post-harvest Technology, Institute of Technology, Haramaya University, Dire Dawa, P.O. Box 138, Ethiopia
| | - Yuning Wang
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215106, China
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Halmagyi TG, Noureen L, Szerlauth A, Szilagyi I. Engineering inorganic nanozyme architectures for decomposition of reactive oxygen species. Dalton Trans 2024; 53:14132-14138. [PMID: 39133078 DOI: 10.1039/d4dt01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Enzyme-mimicking nanomaterials (nanozymes) with antioxidant activity are at the forefront of research efforts towards biomedical and industrial applications. The selection of enzymatically active substances and their incorporation into novel inorganic nanozyme structures is critically important for this field of research. To this end, the fabrication of composites can be desirable as these can either exhibit multiple enzyme-like activities in a single material or show increased activity compared to the nanozyme components. Conversely, by modifying the structure of a nanomaterial, enzyme-like activities can be induced in formerly inert particles. We identify herein the three main routes of composite nanozyme synthesis, namely, surface functionalization of a particle with another compound, heteroaggregation of individual nanozymes, and modification of the bulk nanozyme structure to achieve optimal antioxidant activity. We discuss in particular the different inorganic support materials used in the synthesis of nanozyme architectures and the advantages brought forth by the use of composites.
Collapse
Affiliation(s)
- Tibor G Halmagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Laila Noureen
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Adél Szerlauth
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Istvan Szilagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
3
|
Zheng J, Jo S, Chen J, Das B, Juhasz L, Cabral H, Sugihara K. Dual Nanofriction Force Microscopy/Fluorescence Microscopy Imaging Reveals the Enhanced Force Sensitivity of Polydiacetylene by pH and NaCl. Anal Chem 2023. [PMID: 37465896 DOI: 10.1021/acs.analchem.3c01433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Polydiacetylene (PDA) is a popular mechanochromic material often used in biosensing. The effect of its headgroup-headgroup interactions on thermochromism such as pH or salt concentration dependency has been extensively studied before; however, their effect on mechanochromism at the nanoscale is left unstudied. In this work, nanofriction force microscopy and fluorescence microscopy were combined to study the effect of pH and ionic strength on the polydiacetylene (PDA) force sensitivity at the nanoscale. We found that the increase in pH from 5.7 to 8.2 caused an 8-fold enhancement in force sensitivity. The elevation of NaCl concentration from 10 to 200 mM also made the PDA 5 times more force-sensitive. These results suggest that the PDA force sensitivity at the nanoscale can be conveniently enhanced by "pre-stimulation" with pH or ionic strength.
Collapse
Affiliation(s)
- Jianlu Zheng
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Seiko Jo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Jiali Chen
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Bratati Das
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Levente Juhasz
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
4
|
Alsharif NB, Samu GF, Sáringer S, Szerlauth A, Takács D, Hornok V, Dékány I, Szilagyi I. Antioxidant colloids via heteroaggregation of cerium oxide nanoparticles and latex beads. Colloids Surf B Biointerfaces 2022; 216:112531. [PMID: 35525228 DOI: 10.1016/j.colsurfb.2022.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Antioxidant colloids were developed via controlled heteroaggregation of cerium oxide nanoparticles (CeO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads. Positively charged CeO2 NPs were directly immobilized onto SL particles of opposite surface charge via electrostatic attraction (SL/Ce composite), while negatively charged CeO2 NPs were initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte and then, aggregated with the SL particles (SPCe composite). The PDADMAC served to induce a charge reversal on CeO2 NPs, while the SL support prevented nanoparticle aggregation under conditions, where the dispersions of bare CeO2 NPs were unstable. Both SL/Ce and SPCe showed enhanced radical scavenging activity compared to bare CeO2 NPs and were found to mimic peroxidase enzymes. The results demonstrate that SL beads are suitable supports to formulate CeO2 particles and to achieve remarkable dispersion storage stability. The PDADMAC functionalization and immobilization of CeO2 NPs neither compromised the peroxidase-like activity nor the radical scavenging potential. The obtained SL/Ce and SPCe artificial enzymes are foreseen to be excellent antioxidant agents in various applications in the biomedical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Nizar B Alsharif
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Gergely F Samu
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary; Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Takács
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Viktoria Hornok
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary; Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
5
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
6
|
Katana B, Varga G, May NV, Szilagyi I. Superoxide dismutase mimicking nanocomposites based on immobilization of metal complexes on nanotubular carriers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Sáringer S, Valtner T, Varga Á, Maléth J, Szilágyi I. Development of polymer-based multifunctional composite particles of protease and peroxidase activities. J Mater Chem B 2021; 10:2523-2533. [PMID: 34757359 DOI: 10.1039/d1tb01861b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A hybrid material (SL-PPN-HEP-HRP) of dual enzyme function was prepared by co-immobilization of papain (PPN) and horseradish peroxidase (HRP) on sulphate latex (SL) microspheres using heparin (HEP) polyelectrolyte as a building block in the sequential adsorption method. The doses of PPN, HEP and HRP were optimized in each step of the preparation process to achieve high functional and colloidal stability. The enzymes and the polyelectrolyte strongly adsorbed on the oppositely charged surfaces via electrostatic forces, and enzyme leakage was not observed from the hybrid material, as confirmed by colorimetric protein tests and microscopy measurements. It was found that the polyelectrolyte acted as a separator between PPN and HRP to prevent hydrolytic attack on the latter enzyme, which otherwise prevents the joint use of these important biocatalysts. Excellent colloidal stability was obtained for the SL-PPN-HEP-HRP composite and the embedded PPN and HRP showed remarkable protease and peroxidase activities, respectively, at least until five days after preparation. The present results offer a promising approach to develop biocatalytic systems of dual function, which are often required in manufacturing processes in the food industry, where the colloidal stability of such multifunctional materials is a key parameter to achieve remarkable efficiency.
Collapse
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Tamás Valtner
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Árpád Varga
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group and HCEMM-SZTE Molecular Gastroenterology Research Group, Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - József Maléth
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group and HCEMM-SZTE Molecular Gastroenterology Research Group, Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|