1
|
Golovnev NN, Gerasimova MA, Belash IM, Zolotov AO, Molokeev MS. Yellow-Orange Emission in Sb 3+-Doped Hexakis(thiocarbamidium) Hexabromoindium(III) Tribromide. Inorg Chem 2024; 63:9175-9183. [PMID: 38722294 DOI: 10.1021/acs.inorgchem.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
A luminescent zero-dimensional organic-inorganic hybrid indium halide (TUH)6[In1-xSbxBr6]Br3 (TU = thiourea, 0 ≤ x ≤ 0.0998) was synthesized via the solvothermal method. In structures, resolved by single-crystal X-ray diffraction, isolated distorted [InBr6]3- and [SbBr6]3- octahedra are linked to organic TUH+ cations by intermolecular N-H···Br and N-H···S hydrogen bonds. The crystals were characterized by elemental analysis, TG-DSC, powder X-ray diffraction, FTIR analysis, and steady-state absorption and photoluminescence spectroscopy. (TUH)6[In1-xSbxBr6]Br3 exhibits a broadband yellow-orange emission centered at 595-602 nm with a half-width of 141-149 nm (0.48-0.52 eV) and a large Stokes shift of 232-238 nm (1.33-1.35 eV). This emission can be attributed to the self-trapped exciton emission of triplet states of the octahedral anion [SbBr6]3- or [InBr6]3-. Two possible emission mechanisms were discussed. Doping with Sb3+ leads to a significant increase in photoluminescence quantum yield from 25.7 at x = 0 to 48.4% at x = 0.0065, when excited at 365 nm, indicating the potential use of (TUH)6[In1-xSbxBr6]Br3 compounds in the field of photonics.
Collapse
Affiliation(s)
| | | | | | | | - Maxim S Molokeev
- Siberian Federal University, Krasnoyarsk 660041, Russia
- Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
- Department of Physics, Far Eastern State Transport University, Serysheva str. 47, Khabarovsk 680021, Russia
| |
Collapse
|
2
|
Li Y, He N, Xu B, Dong L, Zhang X, Xu J, Gong P, Lin Z. Synthesis, Structure, and Optical Properties of a 0D Hybrid Organic-Inorganic Metal Halide (C 5N 2H 14Cl)GeCl 3. Inorg Chem 2024; 63:4412-4418. [PMID: 38381086 DOI: 10.1021/acs.inorgchem.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Due to the flexible structural tunability and excellent photoelectric performance, hybrid organic-inorganic metal halides (OIMHs) have attracted intensive attention and become a hot topic in the field of materials. It is important and necessary to explore new OIMHs and study their structure-property relationship. In this work, a new lead-free OIMH, (C5N2H14Cl)GeCl3, is synthesized by the combination of hydrothermal and solution methods. This compound features a zero-dimensional structure composed of inorganic [GeCl3]- trigonal pyramids surrounded by isolated Cl- anions and organic (C5N2H14)2+ cations. Preliminary characterization and first-principles calculations are performed to study its basic optical properties. Interestingly, (C5N2H14Cl)GeCl3 shows weak blue emission under ultraviolet excitation, and the intrinsic mechanism is discussed.
Collapse
Affiliation(s)
- Yuchao Li
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan He
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohui Xu
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Dong
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Zhang
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Xu
- Department of Physics, Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, and Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Pifu Gong
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zheshuai Lin
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yan SF, Guo Y, Liu W, Guo SP, Wu J. Tellurium(IV) Halide Achieving Effective Nonlinear-Optical Activity: The Role of Chiral Ligands and Lattice Distortion. Inorg Chem 2024; 63:73-77. [PMID: 38153229 DOI: 10.1021/acs.inorgchem.3c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Chiral organic-inorganic hybrid metal halides are a promising class of nonlinear-optical materials with unique optical properties and flexible crystal structures. However, the structures and properties of chiral hybrid tellurium halides, especially second harmonic generation (SHG), have not been reported. Here, by introducing chiral organic molecule (R/S)-methylbenzylammonium (R/S-MBA), we synthesized a pair of novel zero-dimensional (0D) chiral tellurium-based hybrid halides with noncentrosymmetric space group C2, (R/S-MBA)2TeCl6 (R/S-Cl). Single-crystal X-ray diffraction analysis and solid-state circular dichroism (CD) spectra confirm that R/S-Cl shows obvious enantiomer enrichment. Moreover, the resulting chiral products present an efficient SHG response. Interestingly, through manipulation of halogen atoms, two pairs of achiral tellurium halides, (R/S-MBA)2TeBr6 (R/S-Br) and (R/S-MBA)2TeI6 (R/S-I), were obtained, both of which crystallize in the centrosymmetric space group R3̅. It is noteworthy that R/S-I has a narrow band gap of 1.55 eV, which is smaller than that of most 0D metal halides and comparable to that of three-dimensional lead halide, showing its potential as a highly efficient light absorber.
Collapse
Affiliation(s)
- Shu-Fang Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jiajing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
4
|
Huang T, Zou B. Luminescent Behavior of Sb 3+-Activated Luminescent Metal Halide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2867. [PMID: 37947712 PMCID: PMC10649199 DOI: 10.3390/nano13212867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Metal halide perovskites have unparalleled optoelectronic properties and broad application potential and are expected to become the next epoch-making optoelectronic semiconductors. Although remarkable achievements have been achieved with lead halide perovskites, the toxicity of lead inhibits the development of such materials. Recently, Sb3+-activated luminescent metal halide perovskite materials with low toxicity, high efficiency, broadband, large Stokes shift, and emission wavelengths covering the entire visible and near-infrared regions have been considered one of the most likely luminescent materials to replace lead halide perovskites. This review reviews the synthesis, luminescence mechanism, structure, and luminescence properties of the compounds. The basic luminescence properties of Sb3+-activated luminescent metal halide perovskites and their applications in WLED, electroluminescence LED, temperature sensing, optical anti-counterfeiting, and X-ray scintillators are introduced. Finally, the development prospects and challenges of Sb3+-activated luminescent metal halide perovskites are discussed.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China;
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China;
| |
Collapse
|
5
|
Guo Y, Yan SF, Yao WD, Chen HY, Liu W, Wu J, Guo SP. Dual Monomeric Inorganic Units Constructed Bright Emissive Zero-Dimensional Antimony Chlorides with Solvent-Induced Reversible Structural Transition. Inorg Chem 2023; 62:13692-13697. [PMID: 37578126 DOI: 10.1021/acs.inorgchem.3c02135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A5M2X11 and A3M2X9 families (A = monovalent organic cation; M = trivalent metal; X = halogen) are receiving increasing attention because of their combination of easy solution processability and superior ferroelectricity properties. However, synthesizing highly efficient A5M2X11 and A3M2X9-type fluorophores with multiple monomeric inorganic units and achieving their structural interconversion remains challenging. Here, we report two novel zero-dimensional (0D) antimony halides, (C10H16N)5Sb2Cl11·C2H3N (1) and (C10H16N)3Sb2Cl9 (2), which not only contain two distinct [SbXn]3-n units but also have excellent orange (590 nm) and yellow-green emission (540 nm) with high PLQY of 17.7% and 31.5%, respectively. Interestingly, a reversible structural conversion could be triggered by acetonitrile steam stimulation, accompanied by luminescence switching properties. This work not only enriches the structure of hybrid Sb-based halides but also provides the possibility of well-known A5M2X11 and A3M2X9 families as structural transformation materials.
Collapse
Affiliation(s)
- Yue Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Shu-Fang Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Hao-Yu Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Jiajing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
6
|
Hao J, An R, Li Y, Wang K, Song S, Feng J, Wang X, Zhang H. Facile synthesis of Sb 3+-doped (Bmim) 2InCl 5(H 2O) through a grinding method for light-emitting diodes. Dalton Trans 2023; 52:6799-6803. [PMID: 37133366 DOI: 10.1039/d3dt00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organic-inorganic metal hybrid halides (OIMHs) as a new kind of photoelectric material have gained much attention in recent years because of their excellent performance in solid-state lighting applications. However, the preparation of most OIMHs is complex and requires a long preparation time in addition to the solvent providing the reaction environment. This greatly limits their further applications. Here, we synthesized zero-dimensional lead-free OIMH (Bmim)2InCl5(H2O) (Bmim = 1-butyl-3-methylimidazolium) by a facile grinding method at room temperature. Through Sb3+ doping, Sb3+:(Bmim)2InCl5(H2O) shows a bright broadband emission centered at 618 nm under UV excitation, which could be attributed to the self-trapped exciton (STE) emission of Sb3+ ions. To explore their ability in the field of solid-state lighting, a white-light-emitting diode (WLED) device based on Sb3+:(Bmim)2InCl5(H2O) with a high color rendering index of 90 was fabricated. This work enriches In3+-based OIMHs and provides a new direction for the simple fabrication of OIMHs.
Collapse
Affiliation(s)
- Jiayue Hao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shuyan Song
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jing Feng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xinyu Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Hongjie Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
7
|
Chai CY, Han XB, Liu CD, Fan CC, Liang BD, Zhang W. Circularly Polarized Luminescence in Zero-Dimensional Antimony Halides: Structural Distortion Controlled Luminescence Thermometer. J Phys Chem Lett 2023; 14:4063-4070. [PMID: 37094225 DOI: 10.1021/acs.jpclett.3c00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Materials emitting circularly polarized luminescence (CPL) have been intensively studied for their promising applications in various fields. However, developing tunable and responsive CPL materials in a wide wavelength range remains a great challenge. Here, a pair of chiral (R,R/S,S-DCDA)3Sb2Cl12 (DCDA = dimethyl-1,2-cyclohexanediamine divalent cation) shows efficient broadband yellow emission with a photoluminescence (PL) quantum yield of 27.6% with a CPL asymmetry factor of 3 × 10-3. The associated chiroptical activity is attributed to the efficient chiral transfer as well as the self-trapped exciton emission originating from the large distortion of the inorganic blocks. Notably, (R,R/S,S-DCDA)3Sb2Cl12 exhibits a large red-shift emission exceeding 100 nm upon lowering temperature. An excellent linear correlation of the PL wavelength on temperature indicates that the compounds can be used as PL thermometers, which originates from a temperature-dependent linear structural distortion of the [SbCl6] emitter. This work inspires the potential utilization of CPL-emitting materials as responsive light sources.
Collapse
Affiliation(s)
- Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Chen Y, Zhou L, Zhou S, You D, Xiong H, Hu Y, Chen Q, He R, Li M. Effect of the Host Lattice Environment on the Expression of 5s 2 Lone-Pair Electrons in a 0D Bismuth-Based Metal Halide. Inorg Chem 2023; 62:2806-2816. [PMID: 36716166 DOI: 10.1021/acs.inorgchem.2c03961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ns2-Metal halide perovskites have attracted wide attention due to their fascinating photophysical properties. However, achieving high photoluminescence (PL) properties is still an enormous challenge, and the relationship between the lattice environment and ns2-electron expression is still elusive. Herein, an organic-inorganic Bi3+-based halide (C5H14N2)2BiCl6·Cl·2H2O (C5H14N22+ = doubly protonated 1-methylpiperazine) with a six-coordinated structure has been successfully prepared, which, however, exhibits inferior PL properties due to the chemically inert expression of Bi3+-6s2 lone-pair electrons. After reasonably embedding Sb3+ with 5s2 electrons into the lattice of (C5H14N2)2BiCl6·Cl·2H2O, the host lattice environment induces the Sb-Cl moiety to change from the original five-coordinated to six-coordinated structure, thereby resulting in a broad-band yellow emission with a PL efficiency up to 50.75%. By utilizing the host lattice of (C5H14N2)2BiCl6·Cl·2H2O, the expression of Sb3+-5s2 lone-pair electrons is improved and thus promotes the radiative recombination from the Sb3+-3P1 state, resulting in the enhanced PL efficiency. This work will provide an in-depth insight into the effect of the local structure on the expression of Sb3+-5s2 lone-pair electrons.
Collapse
Affiliation(s)
- Yihao Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Shuigen Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Donghui You
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Haizhou Xiong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Yuhan Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Qinlin Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| |
Collapse
|
9
|
Liu X, Li H, Zhang T, Zhang L, Zhou L, Li M, He R. Rational Design of a Super-Alkali Compound with Reversible Photoluminescence. Inorg Chem 2023; 62:1054-1061. [PMID: 36606542 DOI: 10.1021/acs.inorgchem.2c04066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The zero-dimensional (0D) (H5O2)(C4H14N2S2)2BiCl8: Sb3+ single crystal is obtained by the cooling crystallization method. Surprisingly, this compound shows reversible photoluminescence (PL) upon H5O2+Cl- removal and insertion. To be specific, the release of H5O2+Cl- resulted in red-orange emission with a very low photoluminescence quantum yield (PLQY). While on the reuptake of it, a bright yellow emission with a nearly 10-fold increase of PLQY was observed. Density functional theory (DFT) calculations and temperature-dependent PL experiments reveal that significant [SbCl6]3- octahedron distortion induced by guest (H5O2+Cl-) removal at the ground state, especially at the excited state, is responsible for the disparate PL performance. Encouragingly, we also found that (C4H14N2S2)2BiCl7: Sb3+ exhibits a fast response (<3 s) to dilute hydrochloric acid with naked-eye perceivable PL color changes, rendering it a potential sensing material for hydrochloric acid.
Collapse
Affiliation(s)
- Xing Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Rongxing He
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| |
Collapse
|
10
|
Peng H, He X, Wei Q, Tian Y, Lin W, Yao S, Zou B. Realizing High-Efficiency Yellow Emission of Organic Antimony Halides via Rational Structural Design. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45611-45620. [PMID: 36179359 DOI: 10.1021/acsami.2c14169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zero-dimensional (0D) organic metal halides have captured extensive attention for their various structures and distinguished optical characteristics. However, achieving efficient emission through rational crystal structure design remains a great challenge, and how the crystal structure affects the photophysical properties of 0D metal halides is currently unclear. Herein, a rational crystal structure regulation strategy in 0D Sb(III)-based metal halides is proposed to realize near-unity photoluminescence quantum yield (PLQY). Specifically, two 0D organic Sb(III)-based compounds with different coordination configurations, namely, (C25H22P)2SbCl5 and (C25H22P)SbCl4 (C25H22P+ = benzyltriphenylphosphonium), were successfully obtained by precisely controlling the ratio of the initial raw materials. (C25H22P)2SbCl5 adopts an octahedral coordination geometry and shows highly efficient broadband yellow emission with a PLQY of 98.6%, while (C25H22P)SbCl4 exhibits a seesaw-shaped [SbCl4]- cluster and does not emit light under photoexcitation. Theoretical calculations reveal that, by rationally controlling the coordination structure, the indirect bandgap of (C25H22P)SbCl4 can be converted to the direct bandgap of (C25H22P)2SbCl5, thus ultimately boosting the emission intensity. Together with efficient emission and outstanding stability of (C25H22P)2SbCl5, a high-performance white-light emitting diode (WLED) with a high luminous efficiency of 31.2 lm W-1 is demonstrated. Our findings provide a novel strategy to regulate the coordination structure of the crystals, so as to rationally optimize the luminescence properties of organic metal halides.
Collapse
Affiliation(s)
- Hui Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Xuefei He
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Qilin Wei
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Ye Tian
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Wenchao Lin
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Shangfei Yao
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| |
Collapse
|
11
|
Ma YY, Pan HM, Li DY, Liu YH, Lu T, Lei XW, Jing Z. Structural evolution and photoluminescence properties of hybrid antimony halides. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Wang Z, Huang X. Luminescent Organic-Inorganic Hybrid Metal Halides: An Emerging Class of Stimuli-Responsive Materials. Chemistry 2022; 28:e202200609. [PMID: 35514119 DOI: 10.1002/chem.202200609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/05/2022]
Abstract
Luminescent organic-inorganic metal halides (OIMHs) are well known as a new materials family in recent years. Novel materials and applications of luminescent OIMHs have been explored by changing either the organic component or the metal halide species. Thereinto, the stimuli-responsive (SR) phenomena in OIMHs have drawn much attention recently, for not only their attractive application potential but also the helpfulness in understanding the stability of OIMHs to the external environment. Herein, the luminescent OIMHs that are sensitive to external stimuli including contact, pressure, mechanical grinding, light, heat, and gas molecules, are reviewed, with an emphasis on analyses of the structural change during the SR process. The applications of SR luminescent OIMHs in widespread fields, including gas sensing, information encryption, and rewritable luminescent paper are summarized. Finally, the challenges that deserve to be further explored in this research field are discussed, which provides certain guidance for the future study of SR luminescent OIMHs.
Collapse
Affiliation(s)
- Zeping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
13
|
A Zero-Dimensional Organic Lead Bromide of (TPA)2PbBr4 Single Crystal with Bright Blue Emission. NANOMATERIALS 2022; 12:nano12132222. [PMID: 35808057 PMCID: PMC9268179 DOI: 10.3390/nano12132222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022]
Abstract
Blue-luminescence materials are needed in urgency. Recently, zero-dimensional (0D) organic metal halides have attractive much attention due to unique structure and excellent optical properties. However, realizing blue emission with near-UV-visible light excitation in 0D organic metal halides is still a great challenge due to their generally large Stokes shifts. Here, we reported a new (0D) organic metal halides (TPA)2PbBr4 single crystal (TPA+ = tetrapropylammonium cation), in which the isolated [PbBr4]2− tetrahedral clusters are surrounded by organic ligand of TPA+, forming a 0D framework. Upon photoexcitation, (TPA)2PbBr4 exhibits a blue emission peaking at 437 nm with a full width at half-maximum (FWHM) of 50 nm and a relatively small Stokes shift of 53 nm. Combined with density functional theory (DFT) calculations and spectral analysis, it is found that the observed blue emission in (TPA)2PbBr4 comes from the combination of free excitons (FEs) and self-trapped exciton (STE), and a small Stokes shift of this compound are caused by the small structure distortion of [PbBr4]2− cluster in the excited state confined by TPA molecules, in which the multi-phonon effect take action. Our results not only clarify the important role of excited state structure distortion in regulating the STEs formation and emission, but also focus on 0D metal halides with bright blue emission under the near-UV-visible light excitation.
Collapse
|
14
|
Peng YC, Zhou SH, Jin JC, Gu Q, Zhuang TH, Gong LK, Wang ZP, Du KZ, Huang XY. Nearly one-fold enhancement in photoluminescence quantum yield for isostructural zero-dimensional hybrid antimony(III) bromides by supramolecular interaction adjustments. Dalton Trans 2022; 51:4919-4926. [PMID: 35262109 DOI: 10.1039/d1dt04374a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zero-dimensional (0D) organic-inorganic metal halides (OIMHs) hold promise in photoluminescence properties and related applications. Thus far, the photoluminescence quantum yields (PLQYs) of the reported 0D hybrid antimony(III) bromides (HABs) are not as high as those of the chloride analogs; therefore, the improvement of PLQY is an important issue for luminescent HABs. Herein, a supramolecular interaction adjustment strategy to improve the PLQYs of HABs is proposed. Two isostructural 0D HABs that crystallize with different lattice solvent molecules, namely [EtPPh3]2[SbBr5]·EtOH (1·EtOH-Br; EtPPh3 = ethyltriphenylphosphonium; EtOH = ethanol) and [EtPPh3]2[SbBr5]·MeCN (1·MeCN-Br; MeCN = acetonitrile), have been synthesized. Both of them exhibit typical self-trapped exciton (STE) photoluminescence (PL) with broad emission, a large Stokes shift and a long lifetime. They show deviation in deep-red emission peaks (655 nm vs. 661 nm) owing to the difference in the distortion level of [SbBr5]2- anions. Most importantly, 1·EtOH-Br exhibits a nearly one-fold enhancement in PLQY compared to 1·MeCN-Br (18.26% vs. 9.29%). Density functional theory (DFT) calculations, hydrogen bonding analysis and Hirshfeld surface analysis suggest that the PLQY enhancement is due to the structural rigidity improvement brought by hydrogen bonding adjustments between the inorganic [SbBr5]2- anions and solvent molecules. This work provides a new insight into the structure-property relationship study and PLQY improvement for 0D OIMHs.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Ce Jin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Gu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Liao-Kuo Gong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ze-Ping Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
|
16
|
Peng YC, Zhang ZZ, Lin YP, Jin JC, Zhuang TH, Gong LK, Wang ZP, Du KZ, Huang XY. A deep-red-emission antimony(III) chloride with dual-cations: extremely large Stokes shift due to high [SbCl 6] distortion. Chem Commun (Camb) 2021; 57:13784-13787. [PMID: 34860224 DOI: 10.1039/d1cc05648d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Compound [C5mim][Mim]2[SbCl6] (1; [C5mim]+ = 1-pentyl-3-methylimidazolium; [Mim]+ = N-methylimidazolium) with dual cations exhibits the first case of deep-red emission in [SbCl6]3--based 0D OIMHs. Anion distortion due to high disequilibrium of supramolecular interactions is revealed to be responsible for the extremely large Stokes shift of 335 nm and FWHM of 210 nm in the emission.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Zhuan Zhang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Jian-Ce Jin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ting-Hui Zhuang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Liao-Kuo Gong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ze-Ping Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Lian L, Zhang P, Zhang X, Ye Q, Qi W, Zhao L, Gao J, Zhang D, Zhang J. Realizing Near-Unity Quantum Efficiency of Zero-Dimensional Antimony Halides through Metal Halide Structural Modulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58908-58915. [PMID: 34860491 DOI: 10.1021/acsami.1c18038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zero-dimensional (0D) organic metal halides have attracted significant attention because of their exceptional structure tunability and excellent optical characteristics. However, controllable synthesis of a desirable configuration of metal halide species in a rational way remains a formidable challenge, and how the unique crystal structures affect the photophysical properties are not yet well understood. Here, a reasonable metal halide structural modulation strategy is proposed to realize near-unity photoluminescence quantum efficiency (PLQE) in 0D organic antimony halides. By carefully controlling the reaction conditions, both 0D (C12H28N)2SbCl5 and (C12H28N)SbCl4 with different metal halide configurations can be prepared. (C12H28N)2SbCl5 with pyramid-shaped [SbCl5]2- species exhibits yellow emission with a near-unity PLQE of 96.8%, while (C12H28N)SbCl4 with seesaw-shaped [SbCl4]- species is not emissive at room temperature. Theoretical calculations indicate that the different photophysical properties of these two crystals can be attributed to the different symmetries of their crystal structures. (C12H28N)2SbCl5 adopts a triclinic structure with P-1 symmetry, while (C12H28N)SbCl4 possesses a monoclinic structure with P21/c symmetry, which has an inversion center, and thus the optical transitions between their band-edge states give a minimal dipole intensity because of their similar parity character. In addition, we also successfully synthesized (C12H28N)2SbCl5 nanocrystals for the first time, which are particularly appealing for their solution processibility and excellent optical properties. Furthermore, (C12H28N)2SbCl5 nanocrystals flexible composite film shows bright yellow emission under β-ray excitation, suggesting a strong potential of (C12H28N)2SbCl5 for β-ray detection.
Collapse
Affiliation(s)
- Linyuan Lian
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Peng Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuwen Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qi Ye
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Qi
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianbo Gao
- Department of Physics and Astronomy, Ultrafast Photophysics of Quantum Devices Laboratory, Clemson University, Clemson, South Carolina 29634, United States
| | - Daoli Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianbing Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
18
|
Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Jin JC, Zhuang TH, Lin YP, Lin BY, Jiang J, Du KZ, Huang XY. Ionic indium(III) chloride hybrids incorporating a 2,2'-bipyrimidine ligand: studies on photoluminescence and structural transformation. Dalton Trans 2021; 50:16406-16413. [PMID: 34734938 DOI: 10.1039/d1dt03264j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although luminescent indium(III) based halide perovskites have been widely investigated, the study of emissive indium(III) halide hybrids is limited. Three indium(III) chloride hybrids based on a bpym ligand were synthesized, namely [EPy]2[InCl4(bpym)InCl4]·DMF (1), [EPy]2[InCl4(bpym)InCl4] (2), and [BPy]2[InCl4(bpym)InCl4] (3) (EPy = N-ethylpyridinium; BPy = N-butylpyridinium; bpym = 2,2'-bipyrimidine). They all exhibit a zero-dimensional structure, in which the ligand bpym interconnects two [InCl4]- to form a [InCl4(bpym)InCl4]2- anion that is further charge-compensated by the corresponding pyridinium cations. This is the first time using bpym to coordinate with an In atom. At 298 K, 1 exhibits a weak emission at 600 nm while 2 and 3 exhibit emissions peaking at 500 nm and 540 nm, respectively. Interestingly, the DMF solvent molecule in 1 can be removed by heating, thus resulting in the structural transformation of 1 into 2 together with a photoluminescence (PL) change. Density functional theory (DFT) calculations confirm that halogen-to-ligand charge-transfer (HLCT) occurs in the emission process. To the best of our knowledge, this is the first report on PL of ionic indium(III) halide hybrids incorporating organic ligands.
Collapse
Affiliation(s)
- Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Bing-Ye Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Jiang Jiang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Peng YC, Jin JC, Gu Q, Dong Y, Zhang ZZ, Zhuang TH, Gong LK, Ma W, Wang ZP, Du KZ, Huang XY. Selective Luminescence Response of a Zero-Dimensional Hybrid Antimony(III) Halide to Solvent Molecules: Size-Effect and Supramolecular Interactions. Inorg Chem 2021; 60:17837-17845. [PMID: 34738796 DOI: 10.1021/acs.inorgchem.1c02445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zero-dimensional (0D) metal halides with solid-state luminescence switching (SSLS) have attracted attention as sensors and luminescent anticounterfeiting. Herein, selective solvent molecule response and accordingly luminescence switching were discovered in 0D [EtPPh3]2[SbCl5] (1, EtPPh3 = ethyltriphenylphosphonium). More than a dozen kinds of solvent molecules have been tested to find out the selection rule for molecule absorption in 1, which is demonstrated to be the size effect of guest molecules. Confirmed by crystal structural analysis, only the solvents with molecular volume less than 22.3 Å3 could be accommodated in 1 leading to the solvatochromic photoluminescence (PL). The mechanism of solvatochromic PL was also deeply studied, which was found to be closely related to the supramolecular interactions between solvent molecules and the host material. Different functional groups of the solvent molecule can affect its strength of hydrogen bonding with [SbCl5]2-, which is crucial for the distortion level of [SbCl5]2- unit and thus results in not only distinct solvatochromic PL but also distinct thermochromic PL. In addition, they all show typical self-trapped exciton triplet emissions. The additional supramolecular interactions from guest molecules can enhance the photoluminescence quantum yield to be as high as 95%.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qi Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Zhuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Liao-Kuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ze-Ping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
21
|
Zhang Z, Lin Y, Jin J, Gong L, Peng Y, Song Y, Shen N, Wang Z, Du K, Huang X. Crystalline-Phase-Recognition-Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption. Angew Chem Int Ed Engl 2021; 60:23373-23379. [PMID: 34402142 DOI: 10.1002/anie.202110088] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/08/2022]
Abstract
Herein, a new mechanism, namely, crystalline phase recognition (CPR), is proposed for the single-crystal-to-single-crystal (SCSC) transition of metal halides. Chiral β-[Bmmim]2 SbCl5 (Bmmim=1-butyl-2,3-methylimidazolium) can recognize achiral α-[Bmmim]2 SbCl5 on the basis of a key-lock feature through intercontact of their single crystals, resulting in a domino phase transition (DPT). The concomitant photoluminescence (PL) switching enables observation of the DPT in situ. The liquid eutectic interface, stress-strain transfer, and feasible thermodynamics are key issues for the CPR. DFT calculations and PL measurements revealed that the optical absorption and emission of the isomers mainly originate from [SbCl5 ]2- anions. The structural effects (e.g., supramolecular interactions and [SbCl5 ]2- distortion) on the optical emission are clarified. As a novel type of stimuli response, the CPR-induced DPT and luminescence switching exhibit potential for application in advanced time-resolved information encryption.
Collapse
Affiliation(s)
- Zhizhuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Yangpeng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Jiance Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liaokuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yingchen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Song
- College of Chemistry and Materials, Nanning Normal University, Nanning, Guangxi, 530001, P. R. China
| | - Nannan Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zeping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Kezhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Zhang Z, Lin Y, Jin J, Gong L, Peng Y, Song Y, Shen N, Wang Z, Du K, Huang X. Crystalline‐Phase‐Recognition‐Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhizhuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou Fujian 350007 P. R. China
| | - Yangpeng Lin
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou Fujian 350007 P. R. China
| | - Jiance Jin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liaokuo Gong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Yingchen Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ying Song
- College of Chemistry and Materials Nanning Normal University Nanning Guangxi 530001 P. R. China
| | - Nannan Shen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Zeping Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Kezhao Du
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou Fujian 350007 P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|