1
|
Huang S, Su G, Yang L, Yue L, Chen L, Huang J, Yang F. Single-Molecule-Level Quantification Based on Atomic Force Microscopy Data Reveals the Interaction between Melittin and Lipopolysaccharide in Gram-Negative Bacteria. Int J Mol Sci 2024; 25:10508. [PMID: 39408837 PMCID: PMC11477153 DOI: 10.3390/ijms251910508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The interaction forces and mechanical properties of the interaction between melittin (Mel) and lipopolysaccharide (LPS) are considered to be crucial driving forces for Mel when killing Gram-negative bacteria (GNB). However, how their interaction forces perform at the single-molecule level and the dissociation kinetic characteristics of the Mel/LPS complex remain poorly understood. In this study, the single-molecule-level interaction forces between Mel and LPSs from E. coli K-12, O55:B5, O111:B4, and O128:B12 were explored using atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS). AFM-based dynamic force spectroscopy (DFS) and an advanced analytical model were employed to investigate the kinetic characteristics of the Mel/LPS complex dissociation. The results indicated that Mel could interact with both rough (R)-form LPS (E. coli K-12) and smooth (S)-form LPSs (E. coli O55:B5, O111:B4, and O128:B12). The S-form LPS showed a more robust interaction with Mel than the R-form LPS, and a slight difference existed in the interaction forces between Mel and the diverse S-form LPS. Mel interactions with the S-form LPSs showed greater specific and non-specific interaction forces than the R-form LPS (p < 0.05), as determined by AFM-based SMFS. However, there was no significant difference in the specific and non-specific interaction forces among the three samples of S-form LPSs (p > 0.05), indicating that the variability in the O-antigen did not affect the interaction between Mel and LPSs. The DFS result showed that the Mel/S-form LPS complexes had a lower dissociation rate constant, a shorter energy barrier width, a longer bond lifetime, and a higher energy barrier height, demonstrating that Mel interacted with S-form LPS to form more stable complexes. This research enhances the existing knowledge of the interaction micromechanics and kinetic characteristics of Mel and LPS at the single-molecule level. Our research may help with the design and evaluation of new anti-GNB drugs.
Collapse
Affiliation(s)
- Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Guoqi Su
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Li Yang
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Liangguang Yue
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| |
Collapse
|
2
|
Gonzalez BD, Forbrig E, Yao G, Kielb P, Mroginski MA, Hildebrandt P, Kozuch J. Cation Dependence of Enniatin B/Membrane-Interactions Assessed Using Surface-Enhanced Infrared Absorption (SEIRA) Spectroscopy. Chempluschem 2024; 89:e202400159. [PMID: 38700478 DOI: 10.1002/cplu.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Enniatins are mycotoxins with well-known antibacterial, antifungal, antihelmintic and antiviral activity, which have recently come to attention as potential mitochondriotoxic anticancer agents. The cytotoxicity of enniatins is traced back to ionophoric properties, in which the cyclodepsipeptidic structure results in enniatin:cation-complexes of various stoichiometries proposed as membrane-active species. In this work, we employed a combination of surface-enhanced infrared absorption (SEIRA) spectroscopy, tethered bilayer lipid membranes (tBLMs) and density functional theory (DFT)-based computational spectroscopy to monitor the cation-dependence (Mz+=Na+, K+, Cs+, Li+, Mg2+, Ca2+) on the mechanism of enniatin B (EB) incorporation into membranes and identify the functionally relevant EBn : Mz+ complexes formed. We find that Na+ promotes a cooperative incorporation, modelled via an autocatalytic mechanism and mediated by a distorted 2 : 1-EB2 : Na+ complex. K+ (and Cs+) leads to a direct but less efficient insertion into membranes due to the adoption of "ideal" EB2 : K+ sandwich complexes. In contrast, the presence of Li+, Mg2+, and Ca2+ causes a (partial) extraction of EB from the membrane via the formation of "belted" 1 : 1-EB : Mz+ complexes, which screen the cationic charge less efficiently. Our results point to a relevance of the cation dependence for the transport into the malignant cells where the mitochondriotoxic anticancer activity is exerted.
Collapse
Affiliation(s)
- Barbara Daiana Gonzalez
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Enrico Forbrig
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Guiyang Yao
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, D-10623, Berlin, Germany
| | - Patrycja Kielb
- Clausius Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstr. 12, D-53115, Bonn, Germany
- Transdisciplinary Research Area', Building Blocks of Matter and Fundamental Interactions (TRA Matter), Universität Bonn, D-53115, Bonn, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Jacek Kozuch
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
- Forschungsbau SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
3
|
Su Z, Chen A, Lipkowski J. Electrochemical and Infrared Studies of a Model Bilayer of the Outer Membrane of Gram-Negative Bacteria and its Interaction with polymyxin─the Last-Resort Antibiotic. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8248-8259. [PMID: 38578277 DOI: 10.1021/acs.langmuir.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A model bilayer of the outer membrane (OM) of Gram-negative bacteria, composed of lipid A and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), was assembled on the β-Tg modified gold (111) single crystal surface using a combination of Langmuir-Blodgett and Langmuir-Schaefer transfer. Electrochemical and spectroscopic methods were employed to study the properties of the model bilayer and its interaction with polymyxin. The model bilayer is stable on the gold surface in the transmembrane potential region between 0.0 and -0.7 V. The presence of Mg2+ coordinates with the phosphate and carboxylate groups in the leaflet of lipid A and stabilizes the structure of the model bilayer. Polymyxin causes the model bilayer leakage and damage in the transmembrane potential region between 0.2 and -0.4 V. At transmembrane potentials lower than -0.5 V, polymyxin does not affect the membrane integrity. Polymyxin binds to the phosphate and carboxylate groups in lipid A molecules and causes the increase of the tilt angle of acyl chains and the decrease of the tilt of the C═O bond. The results in this paper indicate that the antimicrobial activity of polymyxin depends on the transmembrane potential at the model bilayer and provides useful information for the development of new antibiotics.
Collapse
Affiliation(s)
- ZhangFei Su
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Stephani J, Gerhards L, Khairalla B, Solov’yov IA, Brand I. How do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration. ACS Infect Dis 2024; 10:763-778. [PMID: 38259029 PMCID: PMC10862549 DOI: 10.1021/acsinfecdis.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in the inner leaflet. Molecular dynamics simulations revealed that the positively charged helical C-terminus of melittin anchors rapidly into the hydrophilic headgroup region of KLA, while the flexible N-terminus makes contacts with the phosphate groups of KLA, supporting melittin penetration into the boundary between the hydrophilic and hydrophobic regions of the lipids. Electrochemical techniques confirmed the binding of melittin to the model membrane. To probe the peptide conformation and orientation during interaction with the membrane, polarization modulation infrared reflection absorption spectroscopy was used. The measurements revealed conformational changes in the peptide, accompanied by reorientation and translocation of the peptide at the membrane surface. The study suggests that melittin insertion into the outer membrane affects its permeability and capacitance but does not disturb the membrane's bilayer structure, indicating a distinct mechanism of the peptide action on the outer membrane of Gram-negative bacteria.
Collapse
Affiliation(s)
- Justus
C. Stephani
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Bishoy Khairalla
- Department
of Chemistry, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
- Research
Center Neurosensory Science, Carl von Ossietzky
University of Oldenburg, 26111 Oldenburg, Germany
- CeNaD—Center
for Nanoscale Dynamics, Carl von Ossietzky
University of Oldenburg, 26111 Oldenburg, Germany
| | - Izabella Brand
- Department
of Chemistry, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
5
|
Differentiating interactions of antimicrobials with Gram-negative and Gram-positive bacterial cell walls using molecular dynamics simulations. Biointerphases 2022; 17:061008. [PMID: 36511523 DOI: 10.1116/6.0002087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developing molecular models to capture the complex physicochemical architecture of the bacterial cell wall and to study the interaction with antibacterial molecules is an important aspect of assessing and developing novel antimicrobial molecules. We carried out molecular dynamics simulations using an atomistic model of peptidoglycan to represent the architecture for Gram-positive S. aureus. The model is developed to capture various structural features of the Staphylococcal cell wall, such as the peptide orientation, area per disaccharide, glycan length distribution, cross-linking, and pore size. A comparison of the cell wall density and electrostatic potentials is made with a previously developed cell wall model of Gram-negative bacteria, E. coli, and properties for both single and multilayered structures of the Staphylococcal cell wall are studied. We investigated the interactions of the antimicrobial peptide melittin with peptidoglycan structures. The depth of melittin binding to peptidoglycan is more pronounced in E. coli than in S. aureus, and consequently, melittin has greater contacts with glycan units of E. coli. Contacts of melittin with the amino acids of peptidoglycan are comparable across both the strains, and the D-Ala residues, which are sites for transpeptidation, show enhanced interactions with melittin. A low energetic barrier is observed for translocation of a naturally occurring antimicrobial thymol with the four-layered peptidoglycan model. The molecular model developed for Gram-positive peptidoglycan allows us to compare and contrast the cell wall penetrating properties with Gram-negative strains and assess for the first time binding and translocation of antimicrobial molecules for Gram-positive cell walls.
Collapse
|
6
|
Wang A, Zheng Y, Zhu W, Yang L, Yang Y, Peng J. Melittin-Based Nano-Delivery Systems for Cancer Therapy. Biomolecules 2022; 12:biom12010118. [PMID: 35053266 PMCID: PMC8773652 DOI: 10.3390/biom12010118] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Melittin (MEL) is a 26-amino acid polypeptide with a variety of pharmacological and toxicological effects, which include strong surface activity on cell lipid membranes, hemolytic activity, and potential anti-tumor properties. However, the clinical application of melittin is restricted due to its severe hemolytic activity. Different nanocarrier systems have been developed to achieve stable loading, side effects shielding, and tumor-targeted delivery, such as liposomes, cationic polymers, lipodisks, etc. In addition, MEL can be modified on nano drugs as a non-selective cytolytic peptide to enhance cellular uptake and endosomal/lysosomal escape. In this review, we discuss recent advances in MEL’s nano-delivery systems and MEL-modified nano drug carriers for cancer therapy.
Collapse
|
7
|
Sundaresan V, Do H, Shrout JD, Bohn PW. Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems. Analyst 2021; 147:22-34. [PMID: 34874024 PMCID: PMC8791413 DOI: 10.1039/d1an01954f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbes, such as bacteria, can be described, at one level, as small, self-sustaining chemical factories. Based on the species, strain, and even the environment, bacteria can be useful, neutral or pathogenic to human life, so it is increasingly important that we be able to characterize them at the molecular level with chemical specificity and spatial and temporal resolution in order to understand their behavior. Bacterial metabolism involves a large number of internal and external electron transfer processes, so it is logical that electrochemical techniques have been employed to investigate these bacterial metabolites. In this mini-review, we focus on electrochemical and spectroelectrochemical methods that have been developed and used specifically to chemically characterize bacteria and their behavior. First, we discuss the latest mechanistic insights and current understanding of microbial electron transfer, including both direct and mediated electron transfer. Second, we summarize progress on approaches to spatiotemporal characterization of secreted factors, including both metabolites and signaling molecules, which can be used to discern how natural or external factors can alter metabolic states of bacterial cells and change either their individual or collective behavior. Finally, we address in situ methods of single-cell characterization, which can uncover how heterogeneity in cell behavior is reflected in the behavior and properties of collections of bacteria, e.g. bacterial communities. Recent advances in (spectro)electrochemical characterization of bacteria have yielded important new insights both at the ensemble and the single-entity levels, which are furthering our understanding of bacterial behavior. These insights, in turn, promise to benefit applications ranging from biosensors to the use of bacteria in bacteria-based bioenergy generation and storage.
Collapse
Affiliation(s)
- Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|