1
|
Fan XQ, Trunschke J, Ren ZX, Wang H, Pyke GH, van der Kooi CJ, Lunau K. Why are the inner and outer sides of many flower petals differently coloured? PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:665-674. [PMID: 38935692 DOI: 10.1111/plb.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024]
Abstract
The flower perianth has various, non-mutually exclusive functions, such as visual signalling to pollinators and protecting the reproductive organs from the elements and from florivores, but how different perianth structures and their different sides play a role in these functions is unclear. Intriguingly, in many species there is a clear colour difference between the different sides of the perianth, with colour patterns or pigmentation present on only one side. Any adaptive benefit from such colour asymmetry is unclear, as is how the asymmetry evolved. In this viewpoint paper, we address the phenomenon of flowers with differently coloured inner and outer perianth sides, focusing on petals of erect flowers. Guided by existing literature and our own observations, we delineate three non-mutually exclusive evolutionary hypotheses that may explain the factors underlying differently coloured perianth sides. The pollen-protection hypothesis predicts that the outer side of petals contributes to protect pollen against UV radiation, especially during the bud stage. The herbivore-avoidance hypothesis predicts that the outer side of petals reduces the flower's visibility to herbivores. The signalling-to-pollinators hypothesis predicts that flower colours evolve to increase conspicuousness to pollinators. The pollen-protection hypothesis, the herbivore-avoidance hypothesis, and the signalling-to-pollinators hypothesis generate largely but not entirely overlapping predictions about the colour of the inner and outer side of the petals. Field and laboratory research is necessary to disentangle the main drivers and adaptive significance of inner-outer petal side colour asymmetry.
Collapse
Affiliation(s)
- X-Q Fan
- CAS Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - J Trunschke
- CAS Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Z-X Ren
- CAS Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - H Wang
- CAS Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - G H Pyke
- CAS Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Natural Sciences, Macquarie University, Ryde, NSW, Australia
| | - C J van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - K Lunau
- CAS Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Faculty of Mathematics and Natural Sciences, Institute of Sensory Ecology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Konarska A, Weryszko-Chmielewska E, Sulborska-Różycka A, Kiełtyka-Dadasiewicz A, Dmitruk M, Gorzel M. Herb and Flowers of Achillea millefolium subsp. millefolium L.: Structure and Histochemistry of Secretory Tissues and Phytochemistry of Essential Oils. Molecules 2023; 28:7791. [PMID: 38067521 PMCID: PMC10708006 DOI: 10.3390/molecules28237791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Achillea millefolium L. herb and flowers have high biological activity; hence, they are used in medicine and cosmetics. The aim of this study was to perform morpho-anatomical analyses of the raw material, including secretory tissues, histochemical assays of the location of lipophilic compounds, and quantitative and qualitative analysis of essential oil (EO). Light and scanning electron microscopy techniques were used to analyse plant structures. The qualitative analyses of EO were carried out using gas chromatography-mass spectrometry (GC/MS). The results of this study showed the presence of exogenous secretory structures in the raw material, i.e., conical cells (papillae) on the adaxial surface of petal teeth and biseriate glandular trichomes on the surface flowers, bracts, stems, and leaves. Canal-shaped endogenous secretory tissue was observed in the stems and leaves. The histochemical assays revealed the presence of total, acidic, and neutral lipids as well as EO in the glandular trichome cells. Additionally, papillae located at the petal teeth contained neutral lipids. Sesquiterpenes were detected in the glandular trichomes and petal epidermis cells. The secretory canals in the stems were found to contain total and neutral lipids. The phytochemical assays demonstrated that the A. millefolium subsp. millefolium flowers contained over 2.5-fold higher amounts of EO (6.1 mL/kg) than the herb (2.4 mL/kg). The EO extracted from the flowers and herb had a similar dominant compounds: β-pinene, bornyl acetate, (E)-nerolidol, 1,8-cineole, borneol, sabinene, camphor, and α-pinene. Both EO samples had greater amounts of monoterpenes than sesquiterpenes. Higher amounts of oxygenated monoterpenes and oxygenated sesquiterpenoids were detected in the EO from the herb than from the flowers.
Collapse
Affiliation(s)
- Agata Konarska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Elżbieta Weryszko-Chmielewska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Aneta Sulborska-Różycka
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland;
| | - Marta Dmitruk
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Małgorzata Gorzel
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland;
- Faculty of Health Sciences, Vincent Pol University in Lublin, 20-816 Lublin, Poland
| |
Collapse
|
3
|
van der Kooi CJ, Spaethe J. Visual ecology: How glossy colours shine and confuse. Curr Biol 2023; 33:R865-R867. [PMID: 37607483 DOI: 10.1016/j.cub.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Most colours in nature are matte, but across the tree of life glossiness has evolved numerous times, suggesting that glossiness can be beneficial. Recent research finds that glossiness may confuse observers and protect against predators.
Collapse
Affiliation(s)
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Fairnie ALM, Yeo MTS, Gatti S, Chan E, Travaglia V, Walker JF, Moyroud E. Eco-Evo-Devo of petal pigmentation patterning. Essays Biochem 2022; 66:753-768. [PMID: 36205404 PMCID: PMC9750854 DOI: 10.1042/ebc20220051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Colourful spots, stripes and rings decorate the corolla of most flowering plants and fulfil important biotic and abiotic functions. Spatial differences in the pigmentation of epidermal cells can create these patterns. The last few years have yielded new data that have started to illuminate the mechanisms controlling the function, formation and evolution of petal patterns. These advances have broad impacts beyond the immediate field as pigmentation patterns are wonderful systems to explore multiscale biological problems: from understanding how cells make decisions at the microscale to examining the roots of biodiversity at the macroscale. These new results also reveal there is more to petal patterning than meets the eye, opening up a brand new area of investigation. In this mini-review, we summarise our current knowledge on the Eco-Evo-Devo of petal pigmentation patterns and discuss some of the most exciting yet unanswered questions that represent avenues for future research.
Collapse
Affiliation(s)
- Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| | - Stefano Gatti
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Emily Chan
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Valentina Travaglia
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| |
Collapse
|
5
|
Hempel de Ibarra N, Holtze S, Bäucker C, Sprau P, Vorobyev M. The role of colour patterns for the recognition of flowers by bees. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210284. [PMID: 36058248 PMCID: PMC9441241 DOI: 10.1098/rstb.2021.0284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Bees discriminate between many different colours of flower petals, but it is not well understood how they perceive and learn patterns frequently found in flowers with colourful structures. We used multi-spectral imaging to explore chromatic cues in concentric flower patterns as they are seen through the low-resolution eyes of the honeybee. We find a diversity of colour combinations, which suggests that plants might exploit the sensory capabilities of pollinators, like bees, that learn colours easily. A consistent feature is that the surround of the pattern has a stronger chromatic contrast to the foliage background than the centre. This can potentially facilitate the fast identification of floral objects within colourful scenes when a foraging bee moves through a flower patch. In behavioural experiments we trained and tested bees with three types of concentric patterns. They recognized and discriminated patterns accurately in most tests, relying flexibly on both chromatic and spatial cues. Only rarely, depending on the training stimulus, chromatic cues determined their choices whilst pattern cues were ignored. The variability of floral designs and the bees' flexibility in recalling colour and spatial information suggest a role for colour vision in pattern processing. Implications for the signalling strategies of flowers are discussed. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Department of Psychology, University of Exeter, Exeter, UK
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Susanne Holtze
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Bäucker
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Philipp Sprau
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Misha Vorobyev
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
van der Kooi CJ, Kelber A. Achromatic Cues Are Important for Flower Visibility to Hawkmoths and Other Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.819436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Studies on animal colour vision typically focus on the chromatic aspect of colour, which is related to the spectral distribution, and disregard the achromatic aspect, which is related to the intensity (“brightness”) of a stimulus. Although the chromatic component of vision is often most reliable for object recognition because it is fairly context independent, the achromatic component may provide a reliable signal under specific conditions, for example at night when light intensity is low. Here we make a case for the importance of achromatic cues in plant-pollinator signalling, based on experimental data on naïve Deilephila elpenor and Macroglossum stellatarum hawkmoths, optical modelling and synthesising published experiments on bees, flies, butterflies and moths. Our experiments show that in ecologically relevant light levels hawkmoths express a strong preference for brighter stimuli. Published experiments suggest that for flower-visiting bees, butterflies, moths and flies, achromatic cues may be more important for object detection than often considered. Our optical modelling enabled disentangling the contribution of pigments and scattering structures to the flower’s achromatic contrast, and illustrates how flower anatomy and background are important mediating factors. We discuss our findings in the context of the often-assumed dichotomy between detection and discrimination, chromatic versus achromatic vision, and the evolution of floral visual signals.
Collapse
|
7
|
van der Kooi CJ, Vallejo-Marín M, Leonhardt SD. Mutualisms and (A)symmetry in Plant-Pollinator Interactions. Curr Biol 2021; 31:R91-R99. [PMID: 33497641 DOI: 10.1016/j.cub.2020.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The majority of flowering plants relies on animal pollinators for sexual reproduction and many animal pollinators rely on floral resources. However, interests of plants and pollinators are often not the same, resulting in an asymmetric relationship that ranges from mutualistic to parasitic interactions. Our understanding of the processes that underlie this asymmetry remains fragmentary. In this Review, we bring together evidence from evolutionary biology, plant chemistry, biomechanics, sensory ecology and behaviour to illustrate that the degree of symmetry often depends on the perspective taken. We also highlight variation in (a)symmetry within and between plant and pollinator species as well as between geographic locations. Through taking different perspectives from the plant and pollinator sides we provide new ground for studies on the maintenance and evolution of animal pollination and on the (a)symmetry in plant-pollinator interactions.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | | | - Sara D Leonhardt
- Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| |
Collapse
|
8
|
Trunschke J, Lunau K, Pyke GH, Ren ZX, Wang H. Flower Color Evolution and the Evidence of Pollinator-Mediated Selection. FRONTIERS IN PLANT SCIENCE 2021; 12:617851. [PMID: 34381464 PMCID: PMC8350172 DOI: 10.3389/fpls.2021.617851] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/14/2021] [Indexed: 06/01/2023]
Abstract
The evolution of floral traits in animal-pollinated plants involves the interaction between flowers as signal senders and pollinators as signal receivers. Flower colors are very diverse, effect pollinator attraction and flower foraging behavior, and are hypothesized to be shaped through pollinator-mediated selection. However, most of our current understanding of flower color evolution arises from variation between discrete color morphs and completed color shifts accompanying pollinator shifts, while evidence for pollinator-mediated selection on continuous variation in flower colors within populations is still scarce. In this review, we summarize experiments quantifying selection on continuous flower color variation in natural plant populations in the context of pollinator interactions. We found that evidence for significant pollinator-mediated selection is surprisingly limited among existing studies. We propose several possible explanations related to the complexity in the interaction between the colors of flowers and the sensory and cognitive abilities of pollinators as well as pollinator behavioral responses, on the one hand, and the distribution of variation in color phenotypes and fitness, on the other hand. We emphasize currently persisting weaknesses in experimental procedures, and provide some suggestions for how to improve methodology. In conclusion, we encourage future research to bring together plant and animal scientists to jointly forward our understanding of the mechanisms and circumstances of pollinator-mediated selection on flower color.
Collapse
Affiliation(s)
- Judith Trunschke
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Klaus Lunau
- Institute of Sensory Ecology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Graham H. Pyke
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Biological Sciences, Macquarie University, Ryde, NSW, Australia
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
9
|
Sapir Y, Gallagher MK, Senden E. What Maintains Flower Colour Variation within Populations? Trends Ecol Evol 2021; 36:507-519. [PMID: 33663870 DOI: 10.1016/j.tree.2021.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Natural selection acts on phenotypic trait variation. Understanding the mechanisms that create and maintain trait variation is fundamental to understanding the breadth of diversity seen on Earth. Flower colour is among the most conspicuous and highly diverse traits in nature. Most flowering plant populations have uniform floral colours, but a minority exhibit within-population colour variation, either discrete (polymorphic) or continuous. Colour variation is commonly maintained by balancing selection through multiple pollinators, opposing selection regimes, or fluctuating selection. Variation can also be maintained by heterozygote advantage or frequency-dependent selection. Neutral processes, or a lack of selection, may maintain variation, although this remains largely untested. We suggest several prospective research directions that may provide insight into the evolutionary drivers of trait variation.
Collapse
Affiliation(s)
- Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - M Kate Gallagher
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Esther Senden
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Stavenga DG, Leertouwer HL, Dudek B, van der Kooi CJ. Coloration of Flowers by Flavonoids and Consequences of pH Dependent Absorption. FRONTIERS IN PLANT SCIENCE 2021; 11:600124. [PMID: 33488645 PMCID: PMC7820715 DOI: 10.3389/fpls.2020.600124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/08/2020] [Indexed: 05/13/2023]
Abstract
Flavonoid pigments are key determinants of flower colors. As absorption spectra of flavonoids are known to be severely pH-dependent, cellular pH will play a crucial role in flower coloration. The flavonoids are concentrated in the vacuoles of the flowers' epidermal cells, and thus the pigments' absorption spectra are modulated by the vacuolar pH. Here we study the pH dependence of flavonoid absorption spectra in extracts from flowers of two poppy species Papaver dubium (red) and Meconopsis cambrica (orange), and a white and red Mandevilla sanderi variety. In the red poppy and Mandevilla flowers, absorption spectra of the cyanidin- and pelargonidin-based anthocyanins peak in the blue-green-wavelength range at low pH, but exhibit a distinct bathochromic shift at higher pH. This shift to longer wavelengths is not found for the blue-absorbing nudicaulin derivatives of M. cambrica, which have a similar absorption spectrum at low and high pH. The pH-dependent absorption changes of the white M. sanderi's flavonoid remained restricted to the UV. An analysis of the spectra with logistic functions suggests that the pH-dependent characteristics of the basic states of flavonols and anthocyanins are related. The implications of tuning of pH and pigment absorption spectra for studies on flower color evolution are discussed.
Collapse
Affiliation(s)
- Doekele G. Stavenga
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Hein L. Leertouwer
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Bettina Dudek
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Casper J. van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|