1
|
Santos YJS, Malegori C, Colnago LA, Vanin FM. Application on infrared spectroscopy for the analysis of total phenolic compounds in fruits. Crit Rev Food Sci Nutr 2022; 64:2906-2916. [PMID: 36178354 DOI: 10.1080/10408398.2022.2128036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies have demonstrated the metabolic benefits of phenolic compounds on human health. However, traditional analytical methods used for quantification of total phenolic compounds are time-consuming, laborious, require a high volume of reagents, mostly toxic substances, and involve several steps that can result in systematic and instrumental errors. Spectroscopic techniques have been used as alternatives to these methods for the determination of bioactive compounds directly in the food matrix by minimal sample preparation, without using toxic reagents. Therefore, this overview presents the advantages of nondestructive methods focusing on infrared spectroscopy (IR), for the quantification of total phenolic compounds in fruits. In addition, the main difficulties in applying these spectroscopic techniques are presented, as well as a comparison between the quantification of total phenolic compounds by traditional and IR methods. This review concludes by focusing on model building, highlighting that IR data are mainly processed using the partial least-squares (PLS) regression method to predict total phenolic content. The development of portable and inexpensive IR instruments, combined with multivariate data processing, could give to the consumers a straightforward technology to evaluate the total phenolic content of fruits prior to purchase.
Collapse
Affiliation(s)
- Y J S Santos
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Pirassununga, SP, Brazil
| | - C Malegori
- Department of Pharmacy (DIFAR), University of Genova, Genova, Italy
| | - L A Colnago
- Brazilian Corporation for Agricultural Research - Embrapa Instrumentation, São Carlos, SP, Brazil
| | - F M Vanin
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Pirassununga, SP, Brazil
| |
Collapse
|
2
|
Taver IB, Spricigo PC, Neto HB, de Alencar SM, Massarioli AP, Jacomino AP. Bioactive Compounds and In Vitro Antioxidant Capacity of Cambuci and Uvaia: An Extensive Description of Little-Known Fruits from the Myrtaceae Family with High Consumption Potential. Foods 2022; 11:foods11172612. [PMID: 36076801 PMCID: PMC9455873 DOI: 10.3390/foods11172612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Cambuci (Campomanesia phaea O. Berg Landrum) and uvaia (Eugenia pyriformis Cambess), both native Atlantic Rainforest fruits, are noteworthy for being rich in bioactive compounds and their significant antioxidant capacity. Despite the numerous known edible fruits in the world, consumption by humans is most often restricted to a few dozen of them. Such behavior occurs, among other reasons, due to the lack of knowledge about fruits not yet commercialized on a large scale. This study quantified the bioactive compound content (total phenolic compounds and ascorbic acid in cambucis and uvaias; proanthocyanidins in cambucis, and total carotenoid profile and individual carotenoids for grapes) and antioxidant capacity of the edible parts (peel and pulp) of cambuci and uvaia accessions, using three methods (ABTS•+, ROO• radical scavenging and HOCl elimination). Cambuci contained higher phenolic compound levels and displayed higher antioxidant capacity determined by the ABTS•+ and ROO• radical scavenging methods than uvaia (139 and 119 mg 100 g−1 of GAE, 10.5 and 7.73 μmol g−1 of TE; 9.17 and 5.92 μmol g−1 of TE, respectively). Vitamin C content and the antioxidant capacity determined by the HOCl elimination method were about 1.5- and 6-fold higher in uvaia compared to cambuci, with the latter being a first-time report for uvaia. Both fruits contained higher levels of bioactive compounds and antioxidant capacity than other commonly consumed fruits.
Collapse
|
3
|
Dame-Teixeira N, El-Gendy R, Monici Silva I, Holanda CA, de Oliveira AS, Romeiro LAS, Do T. Sustainable multifunctional phenolic lipids as potential therapeutics in Dentistry. Sci Rep 2022; 12:9299. [PMID: 35662265 PMCID: PMC9166758 DOI: 10.1038/s41598-022-13292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Phenolic lipids components of the cashew nutshell liquid (CNSL) have molecular structures capable of chemical signalling that regulate gene expression, metabolism and inflammation. This study sets out to assess how CNSL derivatives impact oral bacteria, from an antibacterial and anti-collagenolytic perspective, as well as its biocompatibility with dental pulp stem cells. Two hemi-synthetic saturated CNSL derivative compounds were selected (LDT11-Anacardic Acids-derivative and LDT409-cardanol-derivative). Bacteriostatic activity was tested against Streptococcus mutans and Veillonella parvula. Antimicrobial capacity against preformed S. mutans biofilms was investigated using a collagen-coated Calgary Biofilm Device and confocal microscopy. Clostridium histolyticum, P. gingivalis and S. mutans biofilms were used to assess anti-collagenolytic activity. Biocompatibility with human dental pulp stromal cells (HDPSCs) was investigated (MTT for viability proportion, LDH assays for cell death rate). LDTs inhibited the bacterial growth, as well as partially inhibited bacterial collagenases in concentrations higher than 5 μg/mL. Dose–response rates of biofilm cell death was observed (LDT11 at 20, 50, 100 μg/mL = 1.0 ± 0.4, 0.7 ± 0.3, 0.6 ± 0.03, respectively). Maximum cytotoxicity was 30%. After 1 week, LDT409 had no HDPSCs death. HDPSCs viability was decreased after 24 h of treatment with LDT11 and LDT409, but recovered at 72 h and showed a massive increase in viability and proliferation after 1 week. LDTs treatment was associated with odontoblast-like morphology. In conclusion, LDT11 multifunctionality and biocompatibility, stimulating dental pulp stem cells proliferation and differentiation, indicates a potential as a bio-based dental material for regenerative Dentistry. Its potential as a bacterial collagenases inhibitor to reduce collagen degradation in root/dentinal caries can be further explored.
Collapse
Affiliation(s)
- Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro - UnB, Federal District, Asa Norte, Brasilia, DF, 70910-900, Brazil. .,Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, LS9 7TF, UK.
| | - Reem El-Gendy
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, LS9 7TF, UK.,Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Isabela Monici Silva
- Department of Dentistry, School of Health Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro - UnB, Federal District, Asa Norte, Brasilia, DF, 70910-900, Brazil
| | - Cleonice Andrade Holanda
- Nucleus of Tropical Medicine, School of Medicine, University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Andressa Souza de Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Federal District, Brasilia, 70910-900, Brazil.,Nucleus of Tropical Medicine, School of Medicine, University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, LS9 7TF, UK
| |
Collapse
|
4
|
Campos-Vega R, Luzardo-Ocampo I, Cuellar-Nuñez ML, Oomah BD. Designer food and feeds from underutilized fruits and vegetables. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|