1
|
Moussa AY, Siddiqui SA, Elhawary EA, Guo K, Anwar S, Xu B. Phytochemical constituents, bioactivities, and applications of custard apple (Annona squamosa L.): A narrative review. Food Chem 2024; 459:140363. [PMID: 39089196 DOI: 10.1016/j.foodchem.2024.140363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
Annona squamosa L. (Annonaceae) is a versatile tree with an edible fruit showing abundant medicinal and industrial applications. The nutritional values of this plant are due to carbohydrates, proteins, amino acids, and vitamins. Ethnopharmacological uses referred to treatment of dysentery, headlice, cancer sores, purgative, and tonic effects. The main reported biological activities for A. squamosa L. were cytotoxic, antidiabetic, antimicrobial, antiparasitic, antioxidant, antimalarial, molluscidal, anthelmintic and insecticidal activities, and its chemical classes encompassed alkaloids, diterpenes, acetogenins, and cyclopeptides. The nutritional content of A. squamosa L. and their main chemical components, biological effects, and the different applications were discussed in this review. This comprehensive review strived to compile all the relevant data in the period between 1990 and 2023 covering databases PubMed, ScienceDirect, Web of Science, Googlescholar and Reaxys concerning A. squamosa L. different parts with their reported phytochemical constituents and biological activities to integrate a better understanding of the medicinal values.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | | | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Kai Guo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China
| | - Sidra Anwar
- Swinburne University of Technology, Melbourne, Australia
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| |
Collapse
|
2
|
Moussa AY, Abbas H, Zewail M, Gaafar PME, Ibrahim N. Green preparation and evaluation of the anti-psoriatic activity of vesicular elastic nanocarriers of kojic acid from Aspergillus oryzae N12: Repurposing of a dermo-cosmetic lead. Arch Pharm (Weinheim) 2024; 357:e2400410. [PMID: 39180243 DOI: 10.1002/ardp.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Psoriasis is a skin disorder characterized by impaired epidermal differentiation that is regularly treated by systemic drugs with undesirable side effects. Based on its anti-inflammatory, antiproliferative and anti-melanoma attributes, the fungal metabolite kojic acid represents an attractive candidate for anti-psoriatic research. The present work aims to investigate an efficient topical bio-friendly vesicular system loaded with kojic acid isolated from Aspergillus oryzae as an alternative way for the management of psoriasis to avoid systemic toxicity. Kojic acid-loaded spanlastics were prepared by ethanol injection technique, employing span 60 along with brij 35 and cremophor rh40 as edge activators, with the complete in vitro characterization of the developed nanoplatform. The selected formulation displayed a spherical morphology, an optimum particle size of 234.2 ± 1.65 nm, high entrapment efficiency (87.4% ± 0.84%) and significant sustained drug release compared with the drug solution. In vivo studies highlighted the superior relief of psoriasis symptoms and the ability to maintain healthy skin with the least changes in mRNA expression of inflammatory cytokines, achieved by the developed nanoplatform compared to kojic acid solution. Moreover, the in vivo histopathological studies confirmed the safety of the topically applied spanlastics. In addition, the molecular mechanism was approached through in vitro assessment of cathepsin S and PDE-4 inhibitory activities and in silico investigation of kojic acid docking in several anti-psoriatic drug targets. Our results suggest that a topically applied vesicular system loaded with kojic acid could lead to an expansion in the dermo-cosmetic use of kojic acid as a natural bio-friendly alternative for systemic anti-psoriatic drugs.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Moussa AY, Luo J, Xu B. Insights into Chemical Diversity and Potential Health-Promoting Effects of Ferns. PLANTS (BASEL, SWITZERLAND) 2024; 13:2668. [PMID: 39339643 PMCID: PMC11434777 DOI: 10.3390/plants13182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The scientific community is focusing on how to enhance human health and immunity through functional foods, and dietary supplements are proven to have a positive as well as a protective effect against infectious and chronic diseases. Ferns act as a taxonomical linkage between higher and lower plants and are endowed with a wide chemical diversity not subjected to sufficient scrutinization before. Even though a wealth of traditional medicinal fern uses were recorded in Chinese medicine, robust phytochemical and biological investigations of these plants are lacking. Herein, an extensive search was conducted using the keywords ferns and compounds, ferns and NMR, ferns and toxicity, and the terms ferns and chemistry, lignans, Polypodiaceae, NMR, isolation, bioactive compounds, terpenes, phenolics, phloroglucinols, monoterpenes, alkaloids, phenolics, and fatty acids were utilized with the Boolean operators AND, OR, and NOT. Databases such as PubMed, Web of Science, Science Direct, Scopus, Google Scholar, and Reaxys were utilized to reveal a wealth of information regarding fern chemistry and their health-promoting effects. Terpenes followed by phenolics represented the largest number of isolated active compounds. Regarding the neuroprotective effects, Psilotium, Polypodium, and Dryopteris species possessed as their major phenolics component unique chemical moieties including catechins, procyanidins, and bioflavonoids. In this updated chemical review, the pharmacological and chemical aspects of ferns are compiled manifesting their chemical diversity in the last seven years (2017-2024) together with a special focus on their nutritive and potential health-promoting effects.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| |
Collapse
|
4
|
Moussa AY, Alanzi AR, Riaz M, Fayez S. Could Mushrooms' Secondary Metabolites Ameliorate Alzheimer Disease? A Computational Flexible Docking Investigation. J Med Food 2024; 27:775-796. [PMID: 39121021 DOI: 10.1089/jmf.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Herein, we highlight the significance of molecular modeling approaches prior to in vitro and in vivo studies; particularly, in diseases with no recognized treatments such as neurological abnormalities. Alzheimer disease is a neurodegenerative disorder that causes irreversible cognitive decline. Toxicity and ADMET studies were conducted using the Qikprop platform in Maestro software and Discovery Studio 2.0, respectively, to select the promising skeletons from more than 45 reviewed compounds isolated from mushrooms in the last decade. Using rigid and flexible molecular docking approaches such as induced fit docking (IFD) in the binding sites of β-secretase (BACE1) and acetylcholine esterase (ACHE), promising structures were screened through high precision molecular docking compared with standard drugs donepezil and (2E)-2-imino-3-methyl-5,5-diphenylimidazolidin-4-one (OKK) using Maestro and Cresset Flare platforms. Molecular interactions, binding distances, and RMSD values were measured to reveal key interactions at the binding sites of the two neurodegenerative enzymes. Analysis of IFD results revealed consistent bindings of dictyoquinazol A and gensetin I in the pocket of 4ey7 while inonophenol A, ganomycin, and fornicin fit quite well in 4dju demonstrating binding poses very close to native ligands at ACHE and BACE1. Respective key amino acid contacts manifested the least steric problems according to their Gibbs free binding energies, Glide XP scores, RMSD values, and molecular orientation respect to the key amino acids. Molecular dynamics simulations further confirmed our findings and prospected these compounds to show significant in vitro results in their future pharmacological studies.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Fahmy NM, Fayez S, Mohamed RW, Elissawy AM, Eldahshan OA, Zengin G, Singab ANB. Moringa oleifera flowers: insights into their aroma chemistry, anti-inflammatory, antioxidant, and enzyme inhibitory properties. BMC Complement Med Ther 2024; 24:286. [PMID: 39061039 PMCID: PMC11282830 DOI: 10.1186/s12906-024-04579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Moringa oleifera is a highly nutritious plant widely used in traditional medicine. RESULTS The aroma constituents present in the fresh flowers of M. oleifera versus the hydrodistilled oil and hexane extract were studied using GC-MS. Aldehydes were the major class detected in the fresh flowers (64.75%) with E-2-hexenal being the predominant component constituting > 50%. Alkane hydrocarbons, monoterpenes, and aldehydes constituted > 50% of the hydrodistilled oil, while alkane hydrocarbons exclusively constitute up to 65.48% of the hexane extract with heptacosane being the major component (46.2%). The cytotoxicity of the hexane extract was assessed on RAW 264.7 macrophages using the MTT assay which revealed no significant cytotoxicity at concentrations of 1 µg/mL and displayed IC50 value at 398.53 µg/mL as compared to celecoxib (anti-inflammatory drug) with IC50 value at 274.55 µg/ml. The hexane extract of Moringa flowers displayed good anti-inflammatory activity through suppression of NO, IL-6, and TNF-α in lipopolysaccharide-induced RAW 264.7 macrophages. The total phenolic and flavonoid content in the hexane extract was found to be 12.51 ± 0.28 mg GAE/g extract and 0.16 ± 0.01 mg RuE/g extract, respectively. It displayed moderate antioxidant activity as indicated by the in vitro DPPH, ABTS, CUPRAC, FRAP, and phosphomolybdenum (PBA) assays. No metal chelating properties were observed for the extract. The enzyme inhibitory potential of the hexane extract was evaluated on acetyl- and butyrylcholinesterases (for neuroprotective assessment), α-amylase and α-glucosidase (for antihyperglycemic assessment), and tyrosinase (for dermoprotective assessment) revealing promising results on cholinesterases, tyrosinase, and α-glucosidase. CONCLUSION Our findings suggested that M. oleifera leaves can be considered as a multidirectional ingredient for preparing functional applications.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Radwa Wahid Mohamed
- Department of Biochemistry and Nutrition, Women's College for Arts Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Türkiye
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Gostin IN, Blidar CF. Glandular Trichomes and Essential Oils Variability in Species of the Genus Phlomis L.: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1338. [PMID: 38794409 PMCID: PMC11125434 DOI: 10.3390/plants13101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
The genus Phlomis is one of the largest genera in the Lamiaceae family and includes species used since ancient times in traditional medicine, as flavoring for food and as fragrance in cosmetics. The secretory structures (represented by glandular trichomes) as well as the essential oils produced by them constitute the subject of this review. While representatives of this genus are not typically regarded as large producers of essential oils compared to other species of the Lamiaceae family, the components identified in their essential oils and their biological properties necessitate more investigation of this genus. A comprehensive analysis of the specialized literature was conducted for each of the 93 currently accepted species to identify all the results obtained by researchers regarding the secretory structures and essential oils of this genus up to the present time. Glandular trichomes, still insufficiently studied, present morphological peculiarities that differentiate this genus within the family: they are of two categories: capitate (with a wide distribution in this genus) and dendroid. The peltate trichomes, characteristic of many species of this family, are absent. The essential oils from the species of the genus Phlomis have been much more widely studied than the secretory structures. They show considerable variability depending on the species and the environmental conditions.
Collapse
Affiliation(s)
- Irina Neta Gostin
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bdul Carol I, No. 11, 700506 Iasi, Romania
| | - Cristian Felix Blidar
- Department of Biology, Faculty of Informatics and Sciences, University of Oradea, Street Universităţii No. 1, 410087 Oradea, Romania;
| |
Collapse
|
7
|
Moussa AY, Alanzi A, Luo J, Chung SK, Xu B. Potential anti-obesity effect of saponin metabolites from adzuki beans: A computational approach. Food Sci Nutr 2024; 12:3612-3627. [PMID: 38726452 PMCID: PMC11077217 DOI: 10.1002/fsn3.4032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 05/12/2024] Open
Abstract
In contrast to its widespread traditional and popular culinary use to reduce weight, Vigna angularis (adzuki beans) was not subjected to sufficient scientific scrutiny. Particularly, its saponins whose role was never investigated before to unveil the beans' antidiabetic and anti-obesity effects. Four vital pancreatic and intestinal carbohydrate enzymes were selected to assess the potency of the triterpenoidal saponins of V. angularis to bind and activate these proteins through high-precision molecular modeling and dynamics mechanisms with accurate molecular mechanics Generalized Born Surface Area (MMGBSA) energy calculations; thus, recognizing their anti-obesity potential. Our results showed that adzukisaponin VI and adzukisaponin IV were the best compounds in the α-amylase and α-glucosidase enzymatic grooves, respectively. Adzukisaponin VI and angulasaponin C were the best fitting in the N-termini of sucrase-isomaltose (SI) enzyme, and angulasaponin C was the best scoring compound in maltase-glucoamylase C-termini. All of them outperformed the standard drug acarbose. These compounds in their protein complexes were selected to undergo molecular simulations of the drug-bound protein compared to the apo-protein through 100 ns, which confirmed the consistency of binding to the key amino acid residues in the four enzyme pockets with the least propensity of unfolding. Detailed analysis is given of the different polar and hydrophobic binding interactions of docked compounds. While maltase-adzukisaponin VI complex scored the lowest MMGBSA free energy of -67.77 Kcal/mol, α-amylase complex with angulasaponin B revealed the free binding energy of -74.18 Kcal/mol with a dominance of van der Waals energy (ΔEVDW) and the least change from the start to the end of the simulation time. This study will direct researchers to the significance of isolating the pure adzuki saponin components to conduct future in vitro and in vivo experimental works and even clinical trials.
Collapse
Affiliation(s)
- Ashaimaa Y. Moussa
- Department of Pharmacognosy, Faculty of PharmacyAin Shams UniversityCairoEgypt
| | - Abdullah Alanzi
- Department of Pharmacognosy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Jinhai Luo
- Department of Life Sciences, Food Science and Technology ProgramBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| | - Sookja Kim Chung
- Medical FacultyMacau University of Science and TechnologyMacauChina
| | - Baojun Xu
- Department of Life Sciences, Food Science and Technology ProgramBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| |
Collapse
|
8
|
Stefanakis MK, Tsiftsoglou OS, Mašković PZ, Lazari D, Katerinopoulos HE. Chemical Constituents and Anticancer Activities of the Extracts from Phlomis × commixta Rech. f. ( P. cretica × P. lanata). Int J Mol Sci 2024; 25:816. [PMID: 38255889 PMCID: PMC10815138 DOI: 10.3390/ijms25020816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The present work is the first report on the ingredients of the P. × commixta hybrid, a plant of the genus Phlomis. So far, thirty substances have been isolated by various chromatographic techniques and identified by spectroscopic methods, such as UV/Vis, NMR, GC-MS and LC-MS. The compounds are classified as flavonoids: naringenin, eriodyctiol, eriodyctiol-7-O-β-D-glucoside, luteolin, luteolin-7-O-β-D-glucoside, apigenin, apigenin-7-O-β-D-glucoside, diosmetin-7-O-β-D-glucoside, quercetin, hesperetin and quercetin-3-O-β-D-glucoside; phenylpropanoids: martynoside, verbascoside, forsythoside B, echinacoside and allysonoside; chromene: 5,7-dihydroxychromone; phenolic acids: caffeic acid, p-hydroxybenzoic acid, chlorogenic acid, chlorogenic acid methyl ester, gallic acid, p-coumaric acid and vanillic acid; aliphatic hydrocarbon: docos-1-ene; steroids: brassicasterol and stigmasterol; a glucoside of allylic alcohol, 3-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-oct-1-ene-3-ol, was fully characterized as a natural product for the first time. Two tyrosol esters were also isolated: tyrosol lignocerate and tyrosol methyl ether palmitate, the latter one being isolated as a natural product for the first time. Moreover, the biological activities of the extracts from the different polarities of the roots, leaves and flowers were estimated for their cytotoxic potency. All root extracts tested showed a high cytotoxic activity against the Hep2c and RD cell lines.
Collapse
Affiliation(s)
- Michalis K. Stefanakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece; (M.K.S.); (H.E.K.)
| | - Olga St. Tsiftsoglou
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pavle Z. Mašković
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
9
|
Xu C, Zhang L, He H, Liu X, Pei X, Ma T, Ma B, Lin W, Zhang B. Sheep tail fat inhibits the proliferation of non-small-cell lung cancer cells in vitro and in vivo. Front Pharmacol 2022; 13:917513. [PMID: 36034869 PMCID: PMC9403308 DOI: 10.3389/fphar.2022.917513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that numerous edible oils may function as adjuvant dietary therapies to treat cancer. We previously reported that the odd-chain saturated fatty acid (OCSFA), heptadecanoic acid (C17:0), profoundly inhibits non-small-cell lung cancer (NSCLC) cell proliferation. However, the antitumor potential of edible lipids rich in C17:0 remains unclear. Here, we determined that sheep tail fat (STF) is a dietary lipid rich in C17:0 and exhibited the greatest inhibitory effect against three NSCLC cell lines (A549, PC-9, and PC-9/GR) among common dietary lipids. Cell migration experiments demonstrated that STF could significantly inhibit the wound healing capacity of three NSCLC cell lines by promoting the generation of reactive oxygen species (ROS) and subsequent cell death. Mechanistic studies showed that STF suppressed NSCLC cell growth by downregulating the Akt/S6K signaling pathway. Furthermore, administration of STF reduced tumor growth, weight, and expression of the proliferative marker Ki-67 in nude mice bearing A549 xenografts. Collectively, our data show that STF has antitumor activity against NSCLC, implying that dietary intake of C17:0-rich STF may be a potential adjuvant therapy for NSCLC.
Collapse
Affiliation(s)
- Changzhi Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Lanlan Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Huimin He
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xiaoyi Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xinxin Pei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Tengfei Ma
- Anhui Tianxiang Grain and Oil Food Co., Ltd., Fuyang, Anhui, China
- Fuyang Tianxiang Food Technology Co., Ltd., Fuyang, Anhui, China
| | - Bingbing Ma
- Anhui Tianxiang Grain and Oil Food Co., Ltd., Fuyang, Anhui, China
- Fuyang Tianxiang Food Technology Co., Ltd., Fuyang, Anhui, China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
- *Correspondence: Wenchu Lin, ; Buchang Zhang,
| | - Buchang Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- *Correspondence: Wenchu Lin, ; Buchang Zhang,
| |
Collapse
|