1
|
Martinez M, Harry GJ, Haynes EN, Lin PID, Oken E, Horton MK, Wright RO, Arora M, Austin C. Quantitative fluoride imaging of teeth using CaF emission by laser induced breakdown spectroscopy. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2023; 38:303-314. [PMID: 36776552 PMCID: PMC9906802 DOI: 10.1039/d2ja00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/15/2022] [Indexed: 05/18/2023]
Abstract
In this work, we propose the use of molecular emission of calcium fluoride (CaF) by laser induced breakdown spectroscopy (LIBS) to obtain quantitative fluoride distribution images of teeth. LIBS has proved to be an efficient technique to detect low amounts of fluoride in solids, and human teeth have the advantage being a matrix rich in calcium. We used new calibration material from sintered hydroxyapatite pellets doped with fluoride to determine the optimized LIBS conditions of argon flow at 1 L min-1 and using the green emission bands of CaF in 530 nm, and obtained a calibration curve between 0 and 400 μg g-1, and LOD of 18 μg g-1. This methodology was applied within a rat model of fluoride exposure and showed increasing tooth-fluoride with increased exposure dose. To demonstrate applicability of this method in human teeth, we quantified fluoride distribution in teeth from three children from non-fluorinated and fluorinated water regions. Samples from children living in fluoridated water regions showed higher fluoride concentrations in dentine formed after birth, compared to a child from a non-fluoridated region. Teeth have been used as biomarkers for environmental exposure and this new method opens the opportunity in epidemiology research to study critical windows of early life exposure to fluoride as well.
Collapse
Affiliation(s)
- Mauro Martinez
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai New York NY USA
| | - G Jean Harry
- Mechanistic Toxicology Branch, Division of National Toxicology Program, National Institute of Environmental Health Sciences Research Triangle Park NC USA
| | - Erin N Haynes
- Department of Epidemiology, College of Public Health, University of Kentucky Lexington KY USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute Boston MA USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute Boston MA USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai New York NY USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai New York NY USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai New York NY USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
2
|
Zhang X, Bai J, Wang R, Wei X, Chen M, Yang T, Wang J. Biological elemental analysis: A cute‐meet of microfluidic device to inductively coupled plasma mass spectrometry. VIEW 2022. [DOI: 10.1002/viw.20220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Junjie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Rui Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| |
Collapse
|
3
|
Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-Part 2: nanomedicine, immunochemistry, mass cytometry, and bioassays. Anal Bioanal Chem 2022; 414:7363-7386. [PMID: 36042038 PMCID: PMC9427439 DOI: 10.1007/s00216-022-04260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Inductively coupled-plasma mass spectrometry (ICP-MS) has transformed our knowledge on the role of trace and major elements in biology and has emerged as the most versatile technique in elemental mass spectrometry. The scope of ICP-MS has dramatically changed since its inception, and nowadays, it is a mature platform technology that is compatible with chromatographic and laser ablation (LA) systems. Over the last decades, it kept pace with various technological advances and was inspired by interdisciplinary approaches which endorsed new areas of applications. While the first part of this review was dedicated to fundamentals in ICP-MS, its hyphenated techniques and the application in biomonitoring, isotope ratio analysis, elemental speciation analysis, and elemental bioimaging, this second part will introduce relatively current directions in ICP-MS and their potential to provide novel perspectives in the medical sciences. In this context, current directions for the characterisation of novel nanomaterials which are considered for biomedical applications like drug delivery and imaging platforms will be discussed while considering different facets of ICP-MS including single event analysis and dedicated hyphenated techniques. Subsequently, immunochemistry techniques will be reviewed in their capability to expand the scope of ICP-MS enabling analysis of a large range of biomolecules alongside elements. These methods inspired mass cytometry and imaging mass cytometry and have the potential to transform diagnostics and treatment by offering new paradigms for personalised medicine. Finally, the interlacing of immunochemistry methods, single event analysis, and functional nanomaterials has opened new horizons to design novel bioassays which promise potential as assets for clinical applications and larger screening programs and will be discussed in their capabilities to detect low-level proteins and nucleic acids.
Collapse
Affiliation(s)
- David Clases
- Nano Mirco LAB, Institute of Chemistry, University of Graz, Graz, Austria.
| | | |
Collapse
|
4
|
Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-Part 1: fundamentals, stand-alone and hyphenated techniques. Anal Bioanal Chem 2022; 414:7337-7361. [PMID: 36028724 PMCID: PMC9482897 DOI: 10.1007/s00216-022-04259-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022]
Abstract
Since its inception in the early 80s, inductively coupled plasma-mass spectrometry has developed to the method of choice for the analysis of elements in complex biological systems. High sensitivity paired with isotopic selectivity and a vast dynamic range endorsed ICP-MS for the inquiry of metals in the context of biomedical questions. In a stand-alone configuration, it has optimal qualities for the biomonitoring of major, trace and toxicologically relevant elements and may further be employed for the characterisation of disrupted metabolic pathways in the context of diverse pathologies. The on-line coupling to laser ablation (LA) and chromatography expanded the scope and application range of ICP-MS and set benchmarks for accurate and quantitative speciation analysis and element bioimaging. Furthermore, isotopic analysis provided new avenues to reveal an altered metabolism, for the application of tracers and for calibration approaches. In the last two decades, the scope of ICP-MS was further expanded and inspired by the introduction of new instrumentation and methodologies including novel and improved hardware as well as immunochemical methods. These additions caused a paradigm shift for the biomedical application of ICP-MS and its impact in the medical sciences and enabled the analysis of individual cells, their microenvironment, nanomaterials considered for medical applications, analysis of biomolecules and the design of novel bioassays. These new facets are gradually recognised in the medical communities and several clinical trials are underway. Altogether, ICP-MS emerged as an extremely versatile technique with a vast potential to provide novel insights and complementary perspectives and to push the limits in the medical disciplines. This review will introduce the different facets of ICP-MS and will be divided into two parts. The first part will cover instrumental basics, technological advances, and fundamental considerations as well as traditional and current applications of ICP-MS and its hyphenated techniques in the context of biomonitoring, bioimaging and elemental speciation. The second part will build on this fundament and describe more recent directions with an emphasis on nanomedicine, immunochemistry, mass cytometry and novel bioassays.
Collapse
Affiliation(s)
- David Clases
- Nano Mirco LAB, Institute of Chemistry, University of Graz, Graz, Austria.
| | | |
Collapse
|
5
|
Voloaca OM, Clench MR, Koellensperger G, Cole LM, Haywood-Small SL, Theiner S. Elemental Mapping of Human Malignant Mesothelioma Tissue Samples Using High-Speed LA–ICP–TOFMS Imaging. Anal Chem 2022; 94:2597-2606. [PMID: 35073065 PMCID: PMC8829826 DOI: 10.1021/acs.analchem.1c04857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
This
is the first report of the use of laser ablation–inductively
coupled plasma time-of-flight mass spectrometry (LA–ICP–TOFMS)
to analyze human malignant pleural mesothelioma (MPM) samples at the
cellular level. MPM is an aggressive, incurable cancer associated
with asbestos exposure, with a long latency and poor overall survival.
Following careful optimization of the laser fluence, the simultaneous
ablation of soft biological tissue and hard mineral fibers was possible,
allowing the spatial detection of elements such as Si, Mg, Ca, and
Fe, which are also present in the glass substrate. A low-dispersion
LA setup was employed, which provided the high spatial resolution
necessary to identify the asbestos fibers and fiber fragments in the
tissue and to characterize the metallome at the cellular level (a
pixel size of 2 μm), with a high speed (at 250 Hz). The multielement
LA–ICP–TOFMS imaging approach enabled (i) the detection
of asbestos fibers/mineral impurities within the MPM tissue samples
of patients, (ii) the visualization of the tissue structure with the
endogenous elemental pattern at high spatial resolution, and (iii)
obtaining insights into the metallome of MPM patients with different
pathologies in a single analysis run. Asbestos and other mineral fibers
were detected in the lung and pleura tissue of MPM patients, respectively,
based on their multielement pattern (Si, Mg, Ca, Fe, and Sr). Interestingly,
strontium was detected in asbestos fibers, suggesting a link between
this potential toxic element and MPM pathogenesis. Furthermore, monitoring
the metallome around the talc deposit regions (characterized by elevated
levels of Al, Mg, and Si) revealed significant tissue damage and inflammation
caused by talc pleurodesis. LA–ICP–TOFMS results correlated
to Perls’ Prussian blue and histological staining of the corresponding
serial sections. Ultimately, the ultra-high-speed and high-spatial-resolution
capabilities of this novel LA–ICP–TOFMS setup may become
an important clinical tool for simultaneous asbestos detection, metallome
monitoring, and biomarker identification.
Collapse
Affiliation(s)
- Oana M. Voloaca
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, S1 1WB Sheffield, U.K
| | - Malcolm R. Clench
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, S1 1WB Sheffield, U.K
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria
| | - Laura M. Cole
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, S1 1WB Sheffield, U.K
| | - Sarah L. Haywood-Small
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, S1 1WB Sheffield, U.K
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria
| |
Collapse
|
6
|
Schoeberl A, Gutmann M, Theiner S, Schaier M, Schweikert A, Berger W, Koellensperger G. Cisplatin Uptake in Macrophage Subtypes at the Single-Cell Level by LA-ICP-TOFMS Imaging. Anal Chem 2021; 93:16456-16465. [PMID: 34846133 PMCID: PMC8674877 DOI: 10.1021/acs.analchem.1c03442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A high-throughput
laser ablation–inductively coupled plasma–time-of-flight
mass spectrometry (LA-ICP-TOFMS) workflow was implemented for quantitative
single-cell analysis following cytospin preparation of cells. For
the first time, in vitro studies on cisplatin exposure addressed human
monocytes and monocyte-derived macrophages (undifferentiated THP-1
monocytic cells, differentiated M0 macrophages, as well as further
polarized M1 and M2 phenotypes) at the single-cell level. The models
are of particular interest as macrophages comprise the biggest part
of immune cells present in the tumor microenvironment and play an
important role in modulating tumor growth and progression. The introduced
bioimaging workflow proved to be universally applicable to adherent
and suspension cell cultures and fit-for-purpose for the quantitative
analysis of several hundreds of cells within minutes. Both, cross-validation
of the method with single-cell analysis in suspension for THP-1 cells
and with LA-ICP-TOFMS analysis of adherent M0 cells grown on chambered
glass coverslips, revealed agreeing platinum concentrations at the
single-cell level. A high incorporation of cisplatin was observed
in M2 macrophages compared to the M0 and M1 macrophage subtypes and
the monocyte model, THP-1. The combination with bright-field images
and monitoring of highly abundant endogenous elements such as phosphorus
and sodium at a high spatial resolution allowed assessing cell size
and important morphological cell parameters and thus straightforward
control over several cell conditions. This way, apoptotic cells and
cell debris as well as doublets or cell clusters could be easily excluded
prior to data evaluation without additional staining.
Collapse
Affiliation(s)
- Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Michael Gutmann
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
7
|
Doble PA, de Vega RG, Bishop DP, Hare DJ, Clases D. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging in Biology. Chem Rev 2021; 121:11769-11822. [PMID: 34019411 DOI: 10.1021/acs.chemrev.0c01219] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elemental imaging gives insight into the fundamental chemical makeup of living organisms. Every cell on Earth is comprised of a complex and dynamic mixture of the chemical elements that define structure and function. Many disease states feature a disturbance in elemental homeostasis, and understanding how, and most importantly where, has driven the development of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as the principal elemental imaging technique for biologists. This review provides an outline of ICP-MS technology, laser ablation cell designs, imaging workflows, and methods of quantification. Detailed examples of imaging applications including analyses of cancers, elemental uptake and accumulation, plant bioimaging, nanomaterials in the environment, and exposure science and neuroscience are presented and discussed. Recent incorporation of immunohistochemical workflows for imaging biomolecules, complementary and multimodal imaging techniques, and image processing methods is also reviewed.
Collapse
Affiliation(s)
- Philip A Doble
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Raquel Gonzalez de Vega
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - David P Bishop
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia.,School of BioSciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David Clases
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| |
Collapse
|