1
|
Mamidi N, De Silva FF, Vacas AB, Gutiérrez Gómez JA, Montes Goo NY, Mendoza DR, Reis RL, Kundu SC. Multifaceted Hydrogel Scaffolds: Bridging the Gap between Biomedical Needs and Environmental Sustainability. Adv Healthc Mater 2024; 13:e2401195. [PMID: 38824416 DOI: 10.1002/adhm.202401195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Hydrogels are dynamically evolving 3D networks composed of hydrophilic polymer scaffolds with significant applications in the healthcare and environmental sectors. Notably, protein-based hydrogels mimic the extracellular matrix, promoting cell adhesion. Further enhancing cell proliferation within these scaffolds are matrix-metalloproteinase-triggered amino acid motifs. Integration of cell-friendly modules like peptides and proteins expands hydrogel functionality. These exceptional properties position hydrogels for diverse applications, including biomedicine, biosensors, environmental remediation, and the food industry. Despite significant progress, there is ongoing research to optimize hydrogels for biomedical and environmental applications further. Engineering novel hydrogels with favorable characteristics is crucial for regulating tissue architecture and facilitating ecological remediation. This review explores the synthesis, physicochemical properties, and biological implications of various hydrogel types and their extensive applications in biomedicine and environmental sectors. It elaborates on their potential applications, bridging the gap between advancements in the healthcare sector and solutions for environmental issues.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Fátima Franco De Silva
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Alejandro Bedón Vacas
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Javier Adonay Gutiérrez Gómez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Naomi Yael Montes Goo
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Daniela Ruiz Mendoza
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Mao X, Shi M, Chen C, Guo J, Liu S, Gou H, Zhu X, Li W, Mao D. Metal-organic framework integrated hydrogel bioreactor for smart detection of metal ions. Biosens Bioelectron 2024; 247:115919. [PMID: 38113693 DOI: 10.1016/j.bios.2023.115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Bioreactors with environment responsiveness for smart detection has attracted widespread interest. Bioreactors that operate in liquid have excellent reaction speed and sensitivity, and those that operate at a solid interface have unique portability and stability. However, bioreactors that can simultaneously take advantage of both properties are still limited. Here, we developed a metal-organic framework (MOF) integrated hydrogel bioreactor that can accommodate both solid and liquid properties by using a hydrogel as a quasi-liquid medium. To enhance the stability and intelligence of the hydrogel bioreactor, we have opted for the utilization of europium metal-organic framework (Eu-MOF) as the optical output to withstand long-term storage challenges, and DNA as the highly programmable substance for intelligent target response. On this basis, smart detection of metal ions and biological micro-molecules have been achieved. Notably, this quasi-liquid hydrogel bioreactor has effectively tackled the intrinsic issues of inadequate dispersion stability of Eu-MOF in liquid systems and poor stability of DNA against environmental interference. Moreover, this MOF integrated hydrogel bioreactor has been applied to the construction of a portable hydrogel bioreactor, which enables platform-free and arrayed target detection via a smartphone, providing a new perspective for further promoting the application of quasi-liquid hydrogel bioreactors and intelligent nanobiological sensors.
Collapse
Affiliation(s)
- Xiaoxia Mao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Mengqin Shi
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Chen Chen
- Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing Normal University, Anqing, 246011, PR China
| | - Jingkang Guo
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Shaowei Liu
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China; Shaoxing Institute of Shanghai University, 78 Sanjiang Road, Shaoxing, PR China.
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China
| | - Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China
| |
Collapse
|
3
|
Guo Y, Li W, Zhang R, Cao S, Zhu X, Chen G, Feng C. A portable and partitioned DNA hydrogel chip for multitarget detection. LAB ON A CHIP 2023; 23:2601-2610. [PMID: 37139578 DOI: 10.1039/d2lc01127a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A DNA hydrogel, owing to its dual properties of liquid and solid, is considered to be an ideal material for constructing biosensors that can integrate the advantages of both wet chemistry and dry chemistry. Nevertheless, it has struggled to cope with the demands of high-throughput analysis. A partitioned and chip-based DNA hydrogel is a potential avenue to achieve this, but currently remains a formidable challenge. Here, we developed a portable and partitioned DNA hydrogel chip that can be used for multitarget detection. The partitioned and surface-immobilized DNA hydrogel chip was formed by inter-crosslinking amplification by incorporating target-recognizing fluorescent aptamer hairpins into multiple rolling circle amplification products, which can achieve portable and simultaneous detection of multiple targets. This approach expands the application of semi-dry chemistry strategies, which can realize high throughput and point of care testing (POCT) of different targets, improving the development of hydrogel-based bioanalysis and providing new potential solutions for biomedical detection.
Collapse
Affiliation(s)
- Yi Guo
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
4
|
Hu H, Zhai X, Li W, Ji S, Dong W, Chen W, Wei W, Lu Z. A photo-triggering double cross-linked adhesive, antibacterial, and biocompatible hydrogel for wound healing. iScience 2022; 25:104619. [PMID: 35789848 PMCID: PMC9250026 DOI: 10.1016/j.isci.2022.104619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Full-thickness wounds, lacking the epidermis and entire dermis and extending into subcutaneous fat, represent a common treatment challenge. Due to the loss of adnexal structures as a source of keratinocytes, full-thickness wounds healing can only be achieved by re-epithelialization from the wound edge and contraction. Here, we developed a hydrogel composed of chitosan methacrylate (CSMA) and o-nitrosobenzaldehyde-modified gelatin (GelNB) for promoting full-thickness wound healing. The CSMA/GelNB (CM/GN) hydrogels exhibited superior mechanical and adhesive properties than that of pure CSMA hydrogel. In vivo experiments confirmed that CM/GN could promote wound healing by generating more hair follicles and mutual blood vessels, high fibroblasts density, and thicker granulation tissue thickness. In addition, reduced secretions of tumor necrosis factor-α (TNF-α) and enhanced secretions of vascular endothelial growth factor (VEGF) could be observed in regenerated tissues after CM/GN treatment. These results suggested that CM/GN hydrogels could be promising candidates to promote wound healing. The CM/GN hydrogels exhibited tissue adhesive properties CM/GN hydrogel facilitated the proliferation of bone marrow stem cells CM/GN hydrogel efficiently promote full-thickness wound healing More hair follicles and mutual blood vessels were generated during wound healing
Collapse
|
5
|
Li Y, Chen P, Gao G, Qin L, Yang H, Zhang X. A smart microhydrogel membrane sensor realized by pipette tip. Biosens Bioelectron 2022; 211:114341. [PMID: 35594625 DOI: 10.1016/j.bios.2022.114341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
In this paper, we describe a simple and practical way to prepare hydrogel membranes in a conical channel (pipette tip). We used a pipette to create a gas pressure difference on both sides of the gel precursor, which drove the gel precursor to move in the pipette tip. During movement, the shape of the hydrogel precursor gradually becomes thinner as the radius of the tapered channel becomes larger. We use this principle to realize the highly controllable preparation of the hydrogel membrane structure (130 μm at its thinnest). Moreover, we fabricated a hydrogel membrane sensor in one step by implanting smart molecules in the hydrogel, which achieved rapid and sensitive detection of 0.5 μM-500 mM potassium ions. This method of preparing the hydrogel membrane sensor does not rely on professional membrane production equipment and complex molecular design processes, has high gel utilization and simple and controllable membrane thickness, and has a wide range of application value in the field of intelligent hydrogel-based analysis technology.
Collapse
Affiliation(s)
- Yansheng Li
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing, 100192, PR China; Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing, 100192, PR China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Guowei Gao
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing, 100192, PR China; Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing, 100192, PR China.
| | - Lei Qin
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing, 100192, PR China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
6
|
Liu S, Yang Y, Shi M, Shi H, Mao D, Mao X, Zhang Y. Smartphone-Based Pure DNAzyme Hydrogel Platform for Visible and Portable Colorimetric Detection of Cell-Free DNA. ACS Sens 2022; 7:658-665. [PMID: 35107259 DOI: 10.1021/acssensors.1c02662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-free DNA (cfDNA), as a tumor marker, is of great importance for the diagnosis of cancer and targeted therapy. However, the need for huge analytical instruments for cfDNA analysis has restricted its practical applications, especially in rural areas and third-world countries. Herein, a portable and visual smartphone-based DNAzyme hydrogel platform is developed for cfDNA detection. The target cfDNA triggers rolling circle amplification to produce a G-quadruplex-comprised DNA hydrogel with an horseradish peroxidase (HRP)-like catalytic function, which further catalyzes the chromogenic substrate to generate a visible output signal. Notably, the naked-eye detection of cfDNA can be realized by the macroscale visibility and catalytic ability of the DNA hydrogel. The linear range of the DNAzyme hydrogel platform for cfDNA detection is 0.1 pM-1500 nM with a detection limit of 0.042 pM. Moreover, this platform is exploited for the detection of cfDNA in spiked human serum with favorable sensitivity and recovery. Therefore, the DNAzyme hydrogel platform provides highly promising potential for testing other nucleic acid biomarkers.
Collapse
Affiliation(s)
- Shaowei Liu
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Yumeng Yang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Mengqin Shi
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Hai Shi
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Mao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Yuanguang Zhang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| |
Collapse
|