1
|
Miao X, Chen T, Lang Z, Wu Y, Wu X, Zhu Z, Xu RX. Design, fabrication, and application of bioengineering vascular networks based on microfluidic strategies. J Mater Chem B 2024. [PMID: 39691980 DOI: 10.1039/d4tb02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Vascularization is a critical component of tissue engineering research and is essential for enhancing the success rate of tissue construction and function. Over the past decade, researchers have explored various methods to construct in vitro vascular networks, including 3D printing, cell sphere technology, and microfluidics. Microfluidic technology has garnered significant attention due to its notable advantages in precision, controllability, flexibility, and applicability. It can be primarily classified into two modes: (i) the pre-designed mode, which involves creating vascular networks by pre-designing vascular channels and seeding endothelial cells, encompassing microfluidic chips and microfluidic spinning technologies; and (ii) the self-assembly mode, where cell spheres are fabricated using microfluidic technology and subsequently self-assemble into vascular networks. In this review, we first provide a brief overview of the normal physiological and pathological characteristics of vascular networks, followed by a discussion of the factors to be considered in designing in vitro vascular networks, and conclude with an examination of the classification of technologies for the preparation of microfluidic vascular networks and recent advancements. It is anticipated that in vitro vascular network models will soon be successfully applied in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Xiaoping Miao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqiang Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ronald X Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Vu TH, Yadav S, Tran CD, Nguyen HQ, Nguyen TH, Nguyen T, Nguyen TK, Fastier-Wooller JW, Dinh T, Phan HP, Ta HT, Nguyen NT, Dao DV, Dau VT. Charge-Reduced Particles via Self-Propelled Electrohydrodynamic Atomization for Drug Delivery Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37318848 DOI: 10.1021/acsami.3c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrohydrodynamic atomization (EHDA) provides unparalleled control over the size and production rate of particles from solution. However, conventional methods produce highly charged particles that are not appropriate for inhalation drug delivery. We present a self-propelled EHDA system to address this challenge, a promising one-step platform for generating and delivering charge-reduced particles. Our approach uses a sharp electrode to produce ion wind, which reduces the cumulative charge in the particles and transports them to a target in front of the nozzle. We effectively controlled the morphologies of polymer products created from poly(vinylidene fluoride) (PVDF) at various concentrations. Our technique has also been proven safe for bioapplications, as evidenced by the delivery of PVDF particles onto breast cancer cells. The combination of simultaneous particle production and charge reduction, along with its direct delivery capability, makes the self-propelled EHDA a versatile technique for drug delivery applications.
Collapse
Affiliation(s)
- Trung-Hieu Vu
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Sharda Yadav
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Canh-Dung Tran
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Hong-Quan Nguyen
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Tuan-Hung Nguyen
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Thanh Nguyen
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Jarred W Fastier-Wooller
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
- School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Toan Dinh
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hang Thu Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4067, Australia
- School of Environment and Science, Griffith University, Brisbane, QLD 4211, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Dzung Viet Dao
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Van Thanh Dau
- Centre for Catalysis and Clean Energy, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
4
|
Fastier-Wooller JW, Vu TH, Nguyen H, Nguyen HQ, Rybachuk M, Zhu Y, Dao DV, Dau VT. Multimodal Fibrous Static and Dynamic Tactile Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27317-27327. [PMID: 35656814 DOI: 10.1021/acsami.2c08195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A highly versatile, low-cost, and robust tactile sensor capable of acquiring load measurements under static and dynamic modes employing a poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] micronanofiber element is presented. The sensor is comprised of three essential layers, a fibrous core P(VDF-TrFE) layer and two Ni/Cu conductive fabric electrode layers, with a total thickness of less than 300 μm. Using an in situ electrospinning process, the core fibers are deposited directly to a soft poly(dimethylsiloxane) (PDMS) fingertip. The core layer conforms to the surface and requires no additional processing, exhibiting the capability of the in situ electrospinning fabrication method to alleviate poor surface contacts and resolve issues associated with adhesion. The fabricated tactile sensor displayed a reliable and consistent measurement performance of static and instantaneous dynamic loads over a total of 30 000 test cycles. The capabilities and implications of the presented tactile sensor design for multimodal sensing in robot tactile sensing applications is further discussed and elucidated.
Collapse
Affiliation(s)
- Jarred W Fastier-Wooller
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
| | - Trung-Hieu Vu
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
| | - Hang Nguyen
- University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| | - Hong-Quan Nguyen
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
| | - Maksym Rybachuk
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan 4111, Australia
- Centre for Quantum Dynamics and Australian Attosecond Science Facility, Griffith University, Science Road, Nathan 4111, Australia
| | - Yong Zhu
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan 4111, Australia
| | - Dzung Viet Dao
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan 4111, Australia
| | - Van Thanh Dau
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
- Centre of Catalysis and Clean Energy, Griffith University, 1 Parklands Drive, Southport 4222, Australia
| |
Collapse
|