1
|
Agosto Nieves R, Gomez Dopazo G, Rosenfeld J, Tran HH, Alvarado Lopez L, Sotero-Esteva J, Fasoli E, Dmochowski IJ, Lee D, Bansal V. Using Hybrid Coating to Fabricate Highly Stable and Expandable Transparent Liquid Marbles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68336-68347. [PMID: 39601688 DOI: 10.1021/acsami.4c14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Liquid marbles (LMs) are microliter-scale droplets coated with hydrophobic solid particles. The particle size and hydrophobicity of the surface coating determine their properties, such as transparency, expandability, and resistance to evaporation and coalescence, one or more of which can be critical to their application as microreactors. This study reports the use of a mixture of two different hydrophobic powders for fabrication of LMs for colorimetric assays: trichloro(1H,1H,2H,2H-perfluorooctyl) silane-linked silica gel (modified silica gel (MSG), particle size: 40-75 μm) and hexamethyldisilazane-linked fumed silica (modified fumed silica (MFS), average aggregate length: 200-300 nm). The hybrid coating mixture (MIX) prepared by mixing these MSG and MFS powders in a ratio of 3:7 (w/w), respectively, contained particles of different sizes as well as different hydrophobicity as the silane linked to MSG is more hydrophobic than the one linked to MFS. LMs fabricated using MIX as the surface coating were characterized and compared to LMs coated with MSG or MFS alone. It was observed that MIX LMs were comparable to the MFS LMs in transparency (higher than the MSG LMs), expandability (more than 20 times their initial volume), and stability against evaporation (for more than 4 h at 78% relative humidity at 26 °C). However, in terms of resistance to coalescence, the MIX LMs showed a resistance comparable to that of MSG LMs, much higher than that of MFS LMs. Further experiments demonstrated that it is the presence of the particles of different sizes (MSG particles are ∼100 times larger than MFS) that improves the resistance to coalescence rather than the higher hydrophobicity of the MSG. Three different colorimetric assays were performed in the MIX LMs, and the results obtained were comparable in accuracy and precision to those obtained in a standard polystyrene microwell plate system. Low quantities of the analytes could be detected and quantified, as evidenced by the limit of detection (alkaline phosphatase (AP): 0.18 μg/mL; bovine serum albumin (BSA): 2.28 μg/mL; and chymotrypsin: 3.69 μM) and limit of quantification (AP: 0.59 μg/mL; BSA: 12.29 μg/mL; and chymotrypsin: 7.59 μM) values. Color intensities in LMs were quantified using a smartphone application, which provides the added benefit of an instrument-free approach. These findings highlight the potential of using LMs stabilized with mixtures of nano- and microparticles as robust, versatile microreactors for portable and sensitive colorimetric assays, paving the way for more accessible and efficient diagnostic tools.
Collapse
Affiliation(s)
- Renis Agosto Nieves
- Department of Chemistry, University of Puerto Rico at Cayey, 205 Ave. Antonio R Barcelo, Cayey, Puerto Rico 00736, United States
| | - Gabriela Gomez Dopazo
- Department of Chemistry, University of Puerto Rico at Cayey, 205 Ave. Antonio R Barcelo, Cayey, Puerto Rico 00736, United States
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, 220S, 33rd Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Joseph Rosenfeld
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, 220S, 33rd Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hong-Huy Tran
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, 220S, 33rd Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Lyanivette Alvarado Lopez
- Department of Biology, University of Puerto Rico at Cayey, 205 Ave. Antonio R Barcelo, Cayey, Puerto Rico 00736, United States
| | - Jose Sotero-Esteva
- Department of Mathematics, University of Puerto Rico at Humacao, CUH Station, Humacao, Puerto Rico 00791, United States
| | - Ezio Fasoli
- Department of Chemistry, University of Puerto Rico at Humacao, CUH Station, Humacao, Puerto Rico 00791, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231S, 34th Street, Philadelphia, Pennsylvania 19104-63223, United States
| | - Daeyeon Lee
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, 220S, 33rd Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Vibha Bansal
- Department of Chemistry, University of Puerto Rico at Cayey, 205 Ave. Antonio R Barcelo, Cayey, Puerto Rico 00736, United States
| |
Collapse
|
2
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
3
|
Akbari MJ, Bijarchi MA, Shafii MB. Experimental investigation on the bouncing dynamics of a liquid marble during the impact on a hydrophilic surface. J Colloid Interface Sci 2024; 662:637-652. [PMID: 38367581 DOI: 10.1016/j.jcis.2024.02.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Liquid marbles are droplets coated by hydrophobic particles. At low Weber numbers (We), when impacting a hydrophilic surface, the marble may bounce on the substrate repeatedly without any rupturing until the quiescence condition is achieved. The marble bouncing has gained far less attention, although its rich underlying physics is due to the interaction between liquid core, hydrophobic grain, and surrounding air. Accordingly, this research experimentally scrutinizes the marble impact and subsequent bouncing on a hydrophilic surface for the first time. Additionally, the conversion of kinetic, gravitational potential, inertial, and surface energies occurring regularly during the impact is exhaustively surveyed. Moreover, the effect of Weber and gravitational Bond numbers (Bo) on the bouncing time, maximum spreading time, maximum spreading ratio, maximum elongation ratio, and maximum restitution are investigated, which characterize the marble impact and bouncing dynamics. This study is one of the limited investigations exploring the effects of the gravitational Bond number on the results. Dimensionless correlations are proposed for the mentioned parameters based on the experimental data. Furthermore, utilizing the simplifying theoretical presumptions, correlations are suggested based on the scale analysis for the spreading time and maximum spreading ratio. The results imply that the mentioned parameters behave differently at low and moderate Weber numbers, though the distinction is more pronounced in the case of the bouncing time, maximum spreading time and maximum spreading ratio. Although increasing with the Weber number when WeWecr. In addition, the maximum elongation ratio linearly grows with the Weber number.
Collapse
Affiliation(s)
- Mohammad Javad Akbari
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Ali Bijarchi
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Behshad Shafii
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Sharif Energy, Water and Environment Institute (SEWEI), Tehran, Iran.
| |
Collapse
|
4
|
Sneha Ravi A, Dalvi S. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review. ACS OMEGA 2024; 9:12307-12330. [PMID: 38524492 PMCID: PMC10956110 DOI: 10.1021/acsomega.3c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.
Collapse
Affiliation(s)
- Apoorva Sneha Ravi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Sameer Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
5
|
Xing Y, Wang Y, Li X, Pang S. Digital microfluidics methods for nucleic acid detection: A mini review. BIOMICROFLUIDICS 2024; 18:021501. [PMID: 38456173 PMCID: PMC10917463 DOI: 10.1063/5.0180125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Many serious infectious diseases have occurred throughout human history. Rapid and accurate detection as well as the isolation of infected individuals, through nucleic acid testing, are effective means of containing the spread of these viruses. However, traditional nucleic acid testing methods rely on complex machines and specialized personnel, making it difficult to achieve large-scale, high-throughput, and rapid detection. In recent years, digital microfluidics has emerged as a promising technology that integrates various fields, including electrokinetics, acoustics, optics, magnetism, and mechanics. By leveraging the advantages of these different technologies, digital microfluidic chips offer several benefits, such as high detection throughput, integration of multiple functions, low reagent consumption, and portability. This rapid and efficient testing is crucial in the timely detection and isolation of infected individuals to prevent the virus spread. Another advantage is the low reagent consumption of digital microfluidic chips. Compared to traditional methods, these chips require smaller volumes of reagents, resulting in cost savings and reduced waste. Furthermore, digital microfluidic chips are portable and can be easily integrated into point-of-care testing devices. This enables testing to be conducted in remote or resource-limited areas, where access to complex laboratory equipment may be limited. Onsite testing reduces the time and cost associated with sample transportation. In conclusion, bioassay technologies based on digital microfluidic principles have the potential to significantly improve infectious disease detection and control. By enabling rapid, high-throughput, and portable testing, these technologies enhance our ability to contain the spread of infectious diseases and effectively manage public health outbreaks.
Collapse
Affiliation(s)
- Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu Province, People’s Republic of China
| | - Yan Wang
- Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, People’s Republic of China
| | - Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong 518000, Shenzhen, People’s Republic of China
| | - Shangran Pang
- Jinzhong Normal Junior College, 189 Guang'an Street, Yuci District, Jinzhong 030600, Shanxi Province, People’s Republic of China
| |
Collapse
|
6
|
Tenjimbayashi M, Mouterde T, Roy PK, Uto K. Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. NANOSCALE 2023; 15:18980-18998. [PMID: 37990550 DOI: 10.1039/d3nr04966c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Liquid marbles (LMs) are nonsticking droplets whose surfaces are covered with low-wettability particles. Owing to their high mobility, shape reconfigurability, and widely accessible liquid/particle possibilities, the research on LMs has flourished since 2001. Their physical properties, fabrication mechanisms, and functionalisation capabilities indicate their potential for various applications. This review summarises the fundamental properties of LMs, the recent advances (mainly works published in 2020-2023) in the concept of LMs, physical properties, formation methods, LM-templated material design, and biochemical applications. Finally, the potential development and variations of LMs are discussed.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Timothée Mouterde
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Pritam Kumar Roy
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
7
|
Sun Y, Zhao M, Th Tee CA, Song L, Guo J, Pan J, Liu C, Zhang S, Zheng Y. Exploring the Effects of Liquid Marbles' Deformation on Their Rolling Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16618-16627. [PMID: 37934203 DOI: 10.1021/acs.langmuir.3c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Liquid marbles (LMs) are nonwetting droplets manufactured by encapsulating droplets with micro- or nanoscale particles. These marbles are widely used as transport carriers for digital microfluidics due to their rapid displacement velocity and leak-free transport. An improved understanding of the resistance mechanism of rolling LMs is crucial for their transport and manipulation. In this study, we investigated the rolling resistance of LMs obtained with different powders and volumes using a high-speed camera. Our findings suggest that the deformation of liquid marbles would hinder their rolling by a resistance torque. To depict this resistance effect, we propose a theoretical model ( f ∼ λ ( ε - 1 2 Bo 1 / 2 ε 2 + 1 4 Bo ε 3 ) ) , where f is the rolling resistance of marbles, λ is the deflection coefficient, Bo is the Bond number, and (ε is the contact surface deformation) that accurately predicts the relationship between deformation and rolling resistance, which is supported by our experimental results. To further validate our theoretical model, we conducted three independent experiments: shape detection of prepared LMs, measuring the elastic force of LMs, and detecting the diffusive motion of the encapsulating particles. Furthermore, we discuss three factors that affect the rolling resistance: the volume of the marbles, the type and size of the encapsulating particles, and the substrate roughness. This comprehensive study not only generalizes the mechanism of deformation hindering the rolling of liquid marbles but also provides a theoretical framework to predict the relationship between the deformation and rolling resistance. These findings have practical implications for improving the manipulation efficiency and advancing the use of LMs as microfluidic carriers.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Clarence Augustine Th Tee
- College of Physics and Electrical Information Engineering, Zhejiang Normal University, Zhejiang 310018, People's Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinwei Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jie Pan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
8
|
Song Z, Lin ES, Uddin MH, Abid HA, Ong JW, Ng TW. Graphene Oxide Paper Manipulation of Micro-Reactor Drops. MICROMACHINES 2023; 14:1306. [PMID: 37512618 PMCID: PMC10384384 DOI: 10.3390/mi14071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
Digital microfluidics, which relies on the movement of drops, is relatively immune to clogging problems, making it suited for micro-reactor applications. Here, graphene oxide paper of 100 μm thickness, fabricated by blade coating sedimented dispersions onto roughened substrates, followed by drying and mechanical exfoliation, was found to be relatively free of cracks and curling. It also exhibited high wettability and elasto-capillary characteristics. Possessing low enough stiffness, it could rapidly and totally self-wrap water drops of 20 μL volume placed 2 mm from its edge when oriented between 0 and 60° to the horizontal. This complete wrapping behavior allowed drops to be translated via movement of the paper over long distances without dislodgement notwithstanding accelerations and decelerations. An amount of 2 drops that were wrapped with separate papers, when collided with each other at speeds up to 0.64 m/s, were found to eschew coalescence. This portends the development of robust digital microfluidic approaches for micro-reactors.
Collapse
Affiliation(s)
- Zhixiong Song
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Eric Shen Lin
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Md Hemayet Uddin
- Melbourne Centre for Nanofabrication, 151 Wellington Rd., Clayton, VIC 3168, Australia
| | - Hassan Ali Abid
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jian Wern Ong
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Tuck Wah Ng
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
9
|
Lathia R, Dey Modak C, Sen P. Suppression of droplet pinch-off by early onset of interfacial instability. J Colloid Interface Sci 2023; 646:606-615. [PMID: 37210908 DOI: 10.1016/j.jcis.2023.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
HYPOTHESIS Interfacial instabilities cause undesirable droplet breakage during impact. Such breakage affects many applications, such as printing, spraying, etc. Particle coating over a droplet can significantly change the impact process and stabilize it against breakage. This work investigates the impact dynamics of particle-coated droplets, which mostly remains unexplored. EXPERIMENTS Particle-coated droplets of different mass loading were formed using volume addition. The prepared droplets were impacted on superhydrophobic surfaces, and their dynamics were recorded using a high-speed camera. FINDINGS We report an intriguing phenomenon where an interfacial fingering instability helps suppress pinch-off in particle-coated droplets. This island of breakage suppression, where the droplet maintains its intactness upon impact, appears in a regime of Weber numbers where bare droplet breakage is inevitable. The onset of fingering instability in particle-coated droplets is observed at much lower impact energy, around two times less than the bare droplet. The instability is characterized and explained using the rim Bond number. The instability suppresses pinch-off because of the higher losses associated with the formation of stable fingers. Such instability can also be seen in dust/pollen-covered surfaces, making it useful in many applications related to cooling, self-cleaning, anti-icing etc.
Collapse
Affiliation(s)
- Rutvik Lathia
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Chandantaru Dey Modak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
11
|
Mohammadrashidi M, Bijarchi MA, Shafii MB, Taghipoor M. Experimental and Theoretical Investigation on the Dynamic Response of Ferrofluid Liquid Marbles to Steady and Pulsating Magnetic Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2246-2259. [PMID: 36722776 DOI: 10.1021/acs.langmuir.2c02811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid marbles are droplets enwrapped by a layer of hydrophobic micro/nanoparticles. Due to the isolation of fluid from its environment, reduction in evaporation rate, low friction with the surfaces, and capability of manipulation even on hydrophilic surfaces, liquid marbles have attracted the attention of researchers in digital microfluidics. This study investigates the manipulation of ferrofluid liquid marbles (FLMs) under DC and pulse width-modulated (PWM) magnetic fields generated by an electromagnet for the first time. At first, the threshold of the magnetic field for manipulating these FLMs is studied. Afterward, the dynamic response of the FLMs to the DC magnetic field for different FLM volumes, coil currents, and initial distances of FLM from the coil is studied, and a theoretical model is proposed. By applying the PWM magnetic field, it is possible to gain more control over the manipulation of the FLMs on the surface and adjust their position more accurately. Results indicate that with a decrease in FLM volume, coil current, and duty cycle, the FLM step length decreases; hence, FLM manipulation is more precise. Under the PWM magnetic field, it is observed that FLM movement is not synchronous with the generated pulse, and even after the coil is turned off, FLMs keep their motion. In the end, with proper adjustment of the electromagnet pulse width, launching of FLMs at a distance farther than the coil is observed.
Collapse
Affiliation(s)
- Mahbod Mohammadrashidi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran1458889694, Iran
| | - Mohamad Ali Bijarchi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran1458889694, Iran
| | - Mohammad Behshad Shafii
- Department of Mechanical Engineering, Sharif University of Technology, Tehran1458889694, Iran
| | - Mojtaba Taghipoor
- Department of Mechanical Engineering, Sharif University of Technology, Tehran1458889694, Iran
| |
Collapse
|
12
|
Roy PK, Shoval S, Fujii S, Bormashenko E. Interfacial crystallization in the polyhedral liquid marbles. J Colloid Interface Sci 2023; 630:685-694. [DOI: 10.1016/j.jcis.2022.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
13
|
Azizian P, Mohammadrashidi M, Abbas Azimi A, Bijarchi MA, Shafii MB, Nasiri R. Magnetically Driven Manipulation of Nonmagnetic Liquid Marbles: Billiards with Liquid Marbles. MICROMACHINES 2022; 14:49. [PMID: 36677108 PMCID: PMC9865651 DOI: 10.3390/mi14010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Liquid marbles are droplets encapsulated by a layer of hydrophobic nanoparticles and have been extensively employed in digital microfluidics and lab-on-a-chip systems in recent years. In this study, magnetic liquid marbles were used to manipulate nonmagnetic liquid marbles. To achieve this purpose, a ferrofluid liquid marble (FLM) was employed and attracted toward an electromagnet, resulting in an impulse to a water liquid marble (WLM) on its way to the electromagnet. It was observed that the manipulation of the WLM by the FLM was similar to the collision of billiard balls except that the liquid marbles exhibited an inelastic collision. Taking the FLM as the projectile ball and the WLM as the other target balls, one can adjust the displacement and direction of the WLM precisely, similar to an expert billiard player. Firstly, the WLM displacement can be adjusted by altering the liquid marble volumes, the initial distances from the electromagnet, and the coil current. Secondly, the WLM direction can be adjusted by changing the position of the WLM relative to the connecting line between the FLM center and the electromagnet. Results show that when the FLM or WLM volume increases by five times, the WLM shooting distance approximately increases by 200% and decreases by 75%, respectively.
Collapse
Affiliation(s)
- Parnian Azizian
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Mahbod Mohammadrashidi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Ali Abbas Azimi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Mohamad Ali Bijarchi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Mohammad Behshad Shafii
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Rohollah Nasiri
- Department of Protein Science, Division of Nanobiotechnology, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| |
Collapse
|
14
|
Kumar Roy P, Binks BP, Shoval S, Dombrovsky LA, Bormashenko E. Hierarchical liquid marbles formed using floating hydrophobic powder and levitating water droplets. J Colloid Interface Sci 2022; 626:466-474. [DOI: 10.1016/j.jcis.2022.06.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
|
15
|
Sun Y, Zheng Y, Liu C, Zhang Y, Wen S, Song L, Zhao M. Liquid marbles, floating droplets: preparations, properties, operations and applications. RSC Adv 2022; 12:15296-15315. [PMID: 35693225 PMCID: PMC9118372 DOI: 10.1039/d2ra00735e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022] Open
Abstract
Liquid marbles (LMs) are non-wettable droplets formed with a coating of hydrophobic particles. They can move easily across either solid or liquid surfaces since the hydrophobic particles protect the internal liquid from contacting the substrate. In recent years, mainly due to their simple preparation, abundant materials, non-wetting/non-adhesive properties, elasticities and stabilities, LMs have been applied in many fields such as microfluidics, sensors and biological incubators. In this review, the recent advances in the preparation, physical properties and applications of liquid marbles, especially operations and floating abilities, are summarized. Moreover, the challenges to achieve uniformity, slow volatilization and stronger stability are pointed out. Various applications generated by LMs' structural characteristics are also expected.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yihan Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Shiying Wen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| |
Collapse
|
16
|
Nguyen NK, Singha P, Dai Y, Rajan Sreejith K, Tran DT, Phan HP, Nguyen NT, Ooi CH. Controllable high-performance liquid marble micromixer. LAB ON A CHIP 2022; 22:1508-1518. [PMID: 35344578 DOI: 10.1039/d2lc00017b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A liquid marble is a liquid droplet coated with a shell of microparticles. Liquid marbles have served as a unique microreactor for chemical reactions and cell culture. Mixing is an essential task for liquid marbles as a microreactor. However, the potential of liquid marble-based microreactors is significantly limited due to the lack of effective mixing strategies. Most mixing strategies used manual and contact-based actuation schemes. This paper reports the development of a manipulation scheme that induces fluid motion into a liquid marble, leading to enhanced mixing. By inducing rotation on a horizontal axis, we significantly increased the mixing rate by 27.6 times compared to a non-actuated liquid marble and reduced the reaction time by more than 10 times. The proposed method provides a simple, continuous, precise, and controllable high-performance mixing strategy on a liquid marble platform.
Collapse
Affiliation(s)
- Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Du Tuan Tran
- R&D Department, Bestmix Corporation, Binh Duong 820000, Vietnam
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| |
Collapse
|
17
|
Cai J, Jiang J, Jiang J, Tao Y, Gao X, Ding M, Fan Y. Fabrication of Transparent and Flexible Digital Microfluidics Devices. MICROMACHINES 2022; 13:mi13040498. [PMID: 35457803 PMCID: PMC9027397 DOI: 10.3390/mi13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022]
Abstract
This study proposed a fabrication method for thin, film-based, transparent, and flexible digital microfluidic devices. A series of characterizations were also conducted with the fabricated digital microfluidic devices. For the device fabrication, the electrodes were patterned by laser ablation of 220 nm-thick indium tin oxide (ITO) layer on a 175 μm-thick polyethylene terephthalate (PET) substrate. The electrodes were insulated with a layer of 12 μm-thick polyethylene (PE) film as the dielectric layer, and finally, a surface treatment was conducted on PE film in order to enhance the hydrophobicity. The whole digital microfluidic device has a total thickness of less than 200 μm and is nearly transparent in the visible range. The droplet manipulation with the proposed digital microfluidic device was also achieved. In addition, a series of characterization studies were conducted as follows: the contact angles under different driving voltages, the leakage current density across the patterned electrodes, and the minimum driving voltage with different control algorithms and droplet volume were measured and discussed. The UV–VIS spectrum of the proposed digital microfluidic devices was also provided in order to verify the transparency of the fabricated device. Compared with conventional methods for the fabrication of digital microfluidic devices, which usually have opaque metal/carbon electrodes, the proposed transparent and flexible digital microfluidics could have significant advantages for the observation of the droplets on the digital microfluidic device, especially for colorimetric analysis using the digital microfluidic approach.
Collapse
Affiliation(s)
- Jianchen Cai
- College of Mechanical Engineering, Quzhou University, Quzhou 324000, China; (J.C.); (J.J.); (Y.T.); (X.G.); (M.D.)
| | - Jiaxi Jiang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Jinyun Jiang
- College of Mechanical Engineering, Quzhou University, Quzhou 324000, China; (J.C.); (J.J.); (Y.T.); (X.G.); (M.D.)
| | - Yin Tao
- College of Mechanical Engineering, Quzhou University, Quzhou 324000, China; (J.C.); (J.J.); (Y.T.); (X.G.); (M.D.)
| | - Xiang Gao
- College of Mechanical Engineering, Quzhou University, Quzhou 324000, China; (J.C.); (J.J.); (Y.T.); (X.G.); (M.D.)
| | - Meiya Ding
- College of Mechanical Engineering, Quzhou University, Quzhou 324000, China; (J.C.); (J.J.); (Y.T.); (X.G.); (M.D.)
| | - Yiqiang Fan
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
- Correspondence: ; Tel.: +86-1851-3899-9080
| |
Collapse
|
18
|
Pang X, Duan M, Liu H, Xi Y, Shi H, Li X. Oscillation-Induced Mixing Advances the Functionality of Liquid Marble Microreactors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11999-12009. [PMID: 35171580 DOI: 10.1021/acsami.1c22314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Droplet-based microreactors often uncover fascinating phenomena and exhibit diverse functionality, which make them applicable in various fields. Liquid marbles (LMs) are non-wetting droplets coated with particles, and these features highlight their potential as microreactors. However, sophisticated experimental designs are typically hindered because it is difficult to obtain sufficient substance mixing in these miniature, damage-prone, self-supporting liquid containers. Here, we demonstrate that subjecting LMs to vertical oscillations by audio signals represents a controllable approach that allows sufficient mixing with variable dynamic modes. The characteristics and key issues in LM oscillation are systematically explored. The effects of oscillation on application potential are examined. Under oscillation conditions, homogeneous mixing can be achieved within a few seconds in LMs consisting of either water or viscous liquids. Importantly, the structures of materials synthesized in LMs can be regulated by modulating the oscillation modes. The variable modes, flexible adjustability, high efficiency, and wide applicability of this oscillation method make it a verified manipulation strategy for advancing the functionality of LM microreactors.
Collapse
Affiliation(s)
- Xianglong Pang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Mei Duan
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Heng Liu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yuhang Xi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Haixiao Shi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xiaoguang Li
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| |
Collapse
|
19
|
|
20
|
Abstract
Modelling the profile of a liquid droplet has been a mainstream technique for researchers to study the physical properties of a liquid. This study proposes a facile modelling approach using an elliptic model to generate the profile of sessile droplets, with MATLAB as the simulation environment. The concept of the elliptic method is simple and easy to use. Only three specific points on the droplet are needed to generate the complete theoretical droplet profile along with its critical parameters such as volume, surface area, height, and contact radius. In addition, we introduced fitting coefficients to accurately determine the contact angle and surface tension of a droplet. Droplet volumes ranging from 1 to 300 µL were chosen for this investigation, with contact angles ranging from 90° to 180°. Our proposed method was also applied to images of actual water droplets with good results. This study demonstrates that the elliptic method is in excellent agreement with the Young–Laplace equation and can be used for rapid and accurate approximation of liquid droplet profiles to determine the surface tension and contact angle.
Collapse
|
21
|
Singha P, Nguyen NK, Zhang J, Nguyen NT, Ooi CH. Oscillating sessile liquid marble - A tool to assess effective surface tension. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Bormashenko E, Valtsifer V. Interfacial crystallization at the intersection of thermodynamic and geometry. Adv Colloid Interface Sci 2021; 296:102510. [PMID: 34478938 DOI: 10.1016/j.cis.2021.102510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Interfacial crystallization appears as a crucial stage in the numeral natural phenomena and technological applications, such as industry of semi-conductors and manufacturing of nano-whiskers. Interfacial aspects of heterogeneous crystallization are surveyed. The review is focused on the interplay of thermodynamic and geometric aspects of the interfacial crystallization. Thermodynamic considerations leading to the Wulff construction are discussed. Equilibrium shape of the crystallized particle in the contact with a foreign substrate giving rise to the Winterbottom construction is treated. The concept of equivalent equilibrium contact angle θeq is introduced. The equivalent contact angle θeq applicable for isotropic crystals does not depend neither on the volume of the crystallized particles nor on the external fields. Bulk contributions to the free energy of the particle such as the bulk heat release in the case of reactive contact or latent heat of crystallization do not influence the equivalent contact angle θeq. Application of the Winterbottom constructions for prediction of the shape of nanoparticles grown on solid substrates is treated. Thermodynamics of interfacial crystallization is discussed. The thermodynamic condition predicting when surface crystallization is thermodynamically favored over homogeneous (bulk) crystallization is supplied. This thermodynamic relation coincides with the condition prescribing the partial wetting of a solid by its melt. Interfacial crystallization in its relation to the "coffee-stain" effect, salt creeping and development of anti-icing surfaces is addressed. Interfacial aspects of epitaxial growth of crystals are considered. The current state-of-art in the field is reviewed.
Collapse
|
23
|
Nguyen NK, Singha P, An H, Phan HP, Nguyen NT, Ooi CH. Electrostatically excited liquid marble as a micromixer. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00121c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liquid marble as a micromixer. Particles suspended in a transparent liquid marble is dispersed in a time lapse photo. The colour change from red to purple shows the particle position from the first frame to the last frame.
Collapse
Affiliation(s)
- Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| |
Collapse
|