1
|
Fu Y, Zhao C, Lin C, Zhang B, Yan L, Zhang B, Wang P, Qiu L. Characterization and immune role of class B scavenger receptor member 1 in spotted sea bass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109811. [PMID: 39117126 DOI: 10.1016/j.fsi.2024.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Scavenger receptors (SRs) are integral to the innate immune system and function as pattern-recognition receptors that facilitate pathogen clearance and mediate anti-inflammatory responses. However, the role of SRs in the immune response of Lateolabrax maculatus against Aeromonas veronii is unclear. Here, we cloned scavenger receptor B1 from L. maculatus (LmSRB1) and performed bioinformatics analysis to study its potential functions. The open reading frame spans 1530 base pairs and encodes a 509-amino acid protein with a molecular mass of 57.44 kDa. Comparative analysis revealed high sequence conservation among fish species. Expression profiling revealed strong LmSRB1 transcription in various tissues, especially in head kidney and spleen. Following A. veronii exposure, LmSRB1 expression initially increased, peaking after 4-8 h, with a notable secondary peak at 72 h. Fluorescence in situ hybridization indicated that LmSRB1 mainly localized to the cytoplasm, and subcellular-localization studies confirmed LmSRB1 protein expression in the cytoplasm and cell membrane. Enzyme-linked immunosorbent assay data showed dose-dependent binding of LmSRB1 to A. veronii. Modulating LmSRB1 expression significantly altered the levels of IL-8, IL-1β, TRAF6, and NIK. These results highlight the crucial role of LmSRB1 in L. maculatus's innate immune response to A. veronii and offer insights into improving the management of bacterial infections in aquaculture.
Collapse
Affiliation(s)
- Yichen Fu
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Changhong Lin
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China.
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China.
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
2
|
Li X, Lu C, Du W, Zou Q, Wang R, Hu C, Li Y, Zhang Y, Mao Z. Development of new dehydrocostuslactone derivatives for treatment of atopic dermatitis via inhibition of the NF-κB signaling pathway. RSC Med Chem 2024; 15:2773-2784. [PMID: 39149113 PMCID: PMC11324064 DOI: 10.1039/d4md00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Atopic dermatitis (AD), a recurrent inflammatory systemic skin disease, is difficult to cure. In the present study, several ethylenediamine-derived dehydrocostuslactone (DHCL) derivatives were prepared to assess their in vitro and in vivo anti-inflammatory activities. The results indicated that DHCL derivatives inhibited NO generation with low cytotoxicity. In particular, compound 5d exhibited the best anti-inflammatory activity. Subsequent experiments revealed that 5d not only inhibited the LPS-induced inflammatory response in RAW264.7 cells via the MAPK-NF-κB signaling pathway inhibition but also significantly decreased Th2-type cytokine levels and inhibited the NF-κB signaling pathway activation in mice with MC903-induced AD. Therefore, DHCL derivatives may be considered as new agents for the treatment of AD.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Cheng Lu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Wenxia Du
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Qiuping Zou
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Chunyan Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Yanping Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| |
Collapse
|
3
|
Tang Y. Analysis of the binding pattern of NIK inhibitors by computational simulation. J Biomol Struct Dyn 2024; 42:3318-3331. [PMID: 37183664 DOI: 10.1080/07391102.2023.2212782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
NF-kappaB-Inducing Kinase (NIK) is a key kinase in the activation of the NF-κB non-classical signalling pathway, which has been shown to be over-activated in patients with inflammatory diseases, immune disorders and malignancies and solid tumours inducing activation of the NF-κB non-classical signalling pathway. The design of ATP-competitive small molecule inhibitors against NIK has been a hot topic in the last decade, and many efficient NIK inhibitors have been identified. In this work, I aim to unravel the mechanism of NIK inhibition by different representative NIK type I 1/2 kinase inhibitors, using ADME, molecular docking, molecular dynamics simulation, MM-PBSA analysis and 3D-QSAR analysis. This work contributes to the understanding of the efficiency of NIK inhibitor binding by revealing the basis of the efficiency of NIK inhibitors, the difference in binding modes between different inhibitors and the overall effect on NIK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yingkai Tang
- Department of Anatomy, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Zhang K, Tang Y, Yu H, Yang J, Tao L, Xiang P. Discovery of lupus nephritis targeted inhibitors based on De novo molecular design: comprehensive application of vinardo scoring, ADMET analysis, and molecular dynamics simulation. J Biomol Struct Dyn 2024:1-14. [PMID: 38501728 DOI: 10.1080/07391102.2024.2329293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Lupus Nephritis (LN) is an autoimmune disease affecting the kidneys, and conventional drug studies have limitations due to its imprecise and complex pathogenesis. Therefore, the aim of this study was to design a novel Lupus Nephritis-targeted drug with good clinical due potential, high potency and selectivity by computer-assisted approach.NIK belongs to the serine/threonine protein kinase, which is gaining attention as a drug target for Lupus Nephritis. we used bioinformatics, homology modelling and sequence comparison analysis, small molecule ab initio design, ADMET analysis, molecular docking, molecular dynamics simulation, and MM/PBSA analysis to design and explore the selectivity and efficiency of a novel Lupus Nephritis-targeting drug, ClImYnib, and a classical NIK inhibitor, NIK SMI1. We used bioinformatics techniques to determine the correlation between lupus nephritis and the NF-κB signaling pathway. De novo drugs design was used to create a NIK-targeted inhibitor, ClImYnib, with lower toxicity, after which we used molecular dynamics to simulate NIK SMI1 against ClImYnib, and the simulation results showed that ClImYnib had better selectivity and efficiency. Our research delves into the molecular mechanism of protein ligands, and we have designed and validated an excellent NIK inhibitor using multiple computational simulation methods. More importantly, it provides an idea of target designing small molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- School of Clinical Medicine, Bengbu Medical College, China
| | - Yingkai Tang
- Department of Anatomy, School of basic Medicine, Bengbu Medical College, China
| | - Haiyue Yu
- School of Clinical Medicine, Bengbu Medical College, China
| | - Jingtao Yang
- School of Clinical Medicine, Bengbu Medical College, China
| | - Lu Tao
- Central Laboratory, The Frist Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ping Xiang
- Central Laboratory, The Frist Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
5
|
Anderson J, Grillo MJ, Harki DA. Development of Allosteric NIK Ligands from Fragment-Based NMR Screening. ACS Med Chem Lett 2023; 14:1815-1820. [PMID: 38116406 PMCID: PMC10726469 DOI: 10.1021/acsmedchemlett.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023] Open
Abstract
NF-κB inducing kinase (NIK) is vital for the induction of many immune responses, and as such, NIK dysregulation has been implicated in various inflammatory diseases and cancers. NIK has been pursued as a potential therapeutic target, and small-molecule inhibitors that bind the orthosteric site on NIK have been reported. However, despite the established chemical matter, NIK inhibitors have not yet reached the clinic. With the goal of developing allosteric NIK ligands using a fragment-based NMR screening approach, we report the identification and development of a series of allosteric, fragment-sized NIK ligands that bind with micromolar potency and good ligand efficiency.
Collapse
Affiliation(s)
- Jared
J. Anderson
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael J. Grillo
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel A. Harki
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Crawford JJ, Feng J, Brightbill HD, Johnson AR, Wright M, Kolesnikov A, Lee W, Castanedo GM, Do S, Blaquiere N, Staben ST, Chiang PC, Fan PW, Baumgardner M, Wong S, Godemann R, Grabbe A, Wiegel C, Sujatha-Bhaskar S, Hymowitz SG, Liau N, Hsu PL, McEwan PA, Ismaili MHA, Landry ML. Filling a nick in NIK: extending the half-life of a NIK inhibitor through structure-based drug design. Bioorg Med Chem Lett 2023; 89:129277. [PMID: 37105490 DOI: 10.1016/j.bmcl.2023.129277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Inhibition of NF-κB inducing kinase (NIK) has been pursued as a promising therapeutic target for autoimmune disorders due to its highly regulated role in key steps of the NF-κB signaling pathway. Previously reported NIK inhibitors from our group were shown to be potent, selective, and efficacious, but had higher human dose projections than desirable for immunology indications. Herein we report the clearance-driven optimization of a NIK inhibitor guided by metabolite identification studies and structure-based drug design. This led to the identification of an azabicyclo[3.1.0]hexanone motif that attenuated in vitro and in vivo clearance while maintaining NIK potency and increasing selectivity over other kinases, resulting in a greater than ten-fold reduction in predicted human dose.
Collapse
Affiliation(s)
- James J Crawford
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianwen Feng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans D Brightbill
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Adam R Johnson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew Wright
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Lee
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicole Blaquiere
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-Chang Chiang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter W Fan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matt Baumgardner
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Susan Wong
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Godemann
- Evotec SE., Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Alice Grabbe
- Evotec SE., Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Catharina Wiegel
- Evotec SE., Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | | | - Sarah G Hymowitz
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas Liau
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter L Hsu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul A McEwan
- Evotec SE., Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | | | - Matthew L Landry
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Verzella D, Cornice J, Arboretto P, Vecchiotti D, Di Vito Nolfi M, Capece D, Zazzeroni F, Franzoso G. The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. Biomedicines 2022; 10:2233. [PMID: 36140335 PMCID: PMC9496094 DOI: 10.3390/biomedicines10092233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
8
|
Krug A, Tari G, Saidane A, Gaulard P, Ricci JE, Lemonnier F, Verhoeyen E. Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers (Basel) 2022; 14:cancers14102392. [PMID: 35625998 PMCID: PMC9139536 DOI: 10.3390/cancers14102392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This work reviews the multiple efforts that have been and are being invested by researchers as well as clinicians to improve the treatment of a specific T-cell lymphoma called follicular helper peripheral T-cell lymphoma. Still, though treatments for B-cell lymphomas have improved, this particular T-cell lymphoma has little to no new therapeutic options that show marked improvements in the survival of the patients compared to treatment with chemotherapy. We report here the evaluation of targeted new therapies for this T-cell lymphoma in new preclinical models for this cancer or in clinical trials with the objective to offer better (combination) treatment options. Abstract The classification of peripheral T-cell lymphomas (PTCL) is constantly changing and contains multiple subtypes. Here, we focus on Tfh-like PTCL, to which angioimmunoblastic T-cell lymphoma (AITL) belongs, according to the last WHO classification. The first-line treatment of these malignancies still relies on chemotherapy but gives very unsatisfying results for these patients. Enormous progress in the last decade in terms of understanding the implicated genetic mutations leading to signaling and epigenetic pathway deregulation in Tfh PTCL allowed the research community to propose new therapeutic approaches. These findings point towards new biomarkers and new therapies, including hypomethylating agents, such as azacytidine, and inhibitors of the TCR-hyperactivating molecules in Tfh PTCL. Additionally, metabolic interference, inhibitors of the NF-κB and PI3K-mTOR pathways and possibly novel immunotherapies, such as antibodies and chimeric antigen receptors (CAR) directed against Tfh malignant T-cell surface markers, are discussed in this review among other new treatment options.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Gamze Tari
- Univ Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France;
| | - Aymen Saidane
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Philippe Gaulard
- Département de Pathologie, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - François Lemonnier
- Service Unité Hémopathies Lymphoides, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France
- Correspondence: or ; Tel.: +33-4-72728731
| |
Collapse
|
9
|
Shen G, Liu X, Lei W, Duan R, Yao Z. Plumbagin is a NF-κB-inducing kinase inhibitor with dual anabolic and antiresorptive effects that prevents menopausal-related osteoporosis in mice. J Biol Chem 2022; 298:101767. [PMID: 35235833 PMCID: PMC8958545 DOI: 10.1016/j.jbc.2022.101767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoporosis is caused by enhanced bone resorption and relatively reduced bone formation. There is an unmet need to develop new agents with both antiresorptive and anabolic effects to treat osteoporosis, although drugs with either effect alone are available. A small molecular compound, plumbagin, was reported to inhibit receptor activator of nuclear factor kappa-B ligand-induced osteoclast (OC) differentiation by inhibiting IκBα phosphorylation-mediated canonical NF-κB activation. However, the key transcriptional factor RelA/p65 in canonical NF-κB pathway functions to promote OC precursor survival but not terminal OC differentiation. Here, we found that plumbagin inhibited the activity of NF-κB inducing kinase, the key molecule that controls noncanonical NF-κB signaling, in an ATP/ADP-based kinase assay. Consistent with this, plumbagin inhibited processing of NF-κB2 p100 to p52 in the progenitor cells of both OCs and osteoblasts (OBs). Interestingly, plumbagin not only inhibited OC but also stimulated OB differentiation in vitro. Importantly, plumbagin prevented trabecular bone loss in ovariectomized mice. This was associated with decreased OC surfaces on trabecular surface and increased parameters of OBs, including OB surface on trabecular surface, bone formation rate, and level of serum osteocalcin, compared to vehicle-treated mice. In summary, we conclude that plumbagin is a NF-κB-inducing kinase inhibitor with dual anabolic and antiresorptive effects on bone and could represent a new class of agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Gengyang Shen
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Wei Lei
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
10
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|