1
|
Tang Z, Wang T, Liu C. Mass Spectrometry-Based Platforms for Protein Lipoxidation Profiling. Chemistry 2024; 30:e202402062. [PMID: 39520376 DOI: 10.1002/chem.202402062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Indexed: 11/16/2024]
Abstract
Lipid peroxidation, occurring through enzymatic or non-enzymatic processes, generates lipid-derived electrophiles (LDEs), which can covalently modify nucleophilic amino acid residues in proteins, a process known as protein lipoxidation. This modification can alter protein structure and function, either causing damage or regulating signalling pathways. Identifying the protein targets and specific lipoxidation sites provide important clues for unveiling the oxidative stress-related protein interaction network and molecular mechanisms of related diseases. In this review, we present a detailed overview of recent advances in protein LDE modification profiling, with a focus on mass spectrometry (MS)-based chemoproteomic platforms for global protein lipoxidation profiling.
Collapse
Affiliation(s)
- Ziming Tang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Tianyang Wang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chunrong Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
2
|
Juneau A, Abdolhosseini M, Rocq C, Pham HDM, Pascall M, Khaliullin RZ, Canesi S, McCalla E, Mauzeroll J. Overcoming Challenges in Electrosynthesis Using High‐Throughput Electrochemistry: Hypervalent Iodine‐Mediated Phenol Dearomatization, a Case Study. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202400193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 01/06/2025]
Abstract
AbstractDespite many recent efforts, the field of organic electrosyn‐thesis faces important challenges due to the intricate nature of heterogeneous redox processes, the wide parameter space to be explored and the lack of standardized methods. To overcome these limitations, we developed a cost‐effective high‐throughput electrochemical (HTE) reactor capable of running 24 individually controlled parallel reactions. This system allows the rapid testing of electrochemical parameters on a given reaction, assessing not only yield but also reproducibility. Using the hypervalent iodine‐mediated dearomatization of phloretic acid as a demonstration of HTE capabilities, we ran more than 200 electrosyntheses in different experimental conditions and demonstrate the effect of parameters such as total charge transferred, current, electrode materials, electrolyte formulation and concentration, mediator formulation and concentration and electrochemical technique of oxidation. Notably, this report demonstrates that while catalytic amounts of iodine mediator can be used successfully, the reproducibility may be affected, which calls for a cautious approach when developing similar transformations. Using cyclic voltammetry, density functional theory, chronopotentiometry, and Raman spectroscopy, we shed light on the causes of this issue.
Collapse
Affiliation(s)
- Antoine Juneau
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Marzieh Abdolhosseini
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Camille Rocq
- Département de chimie Université du Québec à Montréal Laboratoire de Méthodologie et Synthèse de Produits Naturels C.P. 8888, Succ. Centre-Ville Montréal Québec Canada H3C 3P8
| | - Hanh D. M. Pham
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Mia Pascall
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Rustam Z. Khaliullin
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Sylvain Canesi
- Département de chimie Université du Québec à Montréal Laboratoire de Méthodologie et Synthèse de Produits Naturels C.P. 8888, Succ. Centre-Ville Montréal Québec Canada H3C 3P8
| | - Eric McCalla
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Janine Mauzeroll
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| |
Collapse
|
3
|
Wang J, Feng X, Liu X, Wang G, Xiong Y, Zhang L, Zhang Y, Lu H. In-Depth Profiling of 4-Hydroxy-2-nonenal Modification via Reversible Thiazolidine Chemistry. Anal Chem 2024; 96:5125-5133. [PMID: 38502245 DOI: 10.1021/acs.analchem.3c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Protein modification by lipid-derived electrophiles (LDEs) is associated with various signaling pathways. Among these LDEs, 4-hydroxy-2-nonenal (HNE) is the most toxic, and protein modified with HNE has been linked to various diseases, including Alzheimer's and Parkinson's. However, due to their low abundance, in-depth profiling of HNE modifications still presents challenges. This study introduces a novel strategy utilizing reversible thiazolidine chemistry to selectively capture HNE-modified proteins and a palladium-mediated cleavage reaction to release them. Thousands of HNE-modified sites in different cell lines were identified. Combined with ABPP, we discovered a set of HNE-sensitive sites that offer a new tool for studying LDE modifications in proteomes.
Collapse
Affiliation(s)
- Jun Wang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Xiaoxiao Feng
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Xuejiao Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Guoli Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Yingying Xiong
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Ying Zhang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Altomare A, Baron G, Gianazza E, Banfi C, Carini M, Aldini G. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol 2021; 42:101899. [PMID: 33642248 PMCID: PMC8113032 DOI: 10.1016/j.redox.2021.101899] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive carbonyl species (RCS) formed by lipidperoxidation as free forms or as enzymatic and non-enzymatic conjugates are widely used as an index of oxidative stress. Besides general measurements based on derivatizing reactions, more selective and sensitive MS based analyses have been proposed in the last decade. Untargeted and targeted methods for the measurement of free RCS and adducts have been described and their applications to in vitro and ex vivo samples have permitted the identification of many biological targets, reaction mechanisms and adducted moieties with a particular relevance to RCS protein adducts. The growing interest in protein carbonylation can be explained by considering that protein adducts are now recognized as being involved in the damaging action of oxidative stress so that their measurement is performed not only to obtain an index of lipid peroxidation but also to gain a deeper insight into the molecular mechanisms of oxidative stress. The aim of the review is to discuss the most novel analytical approaches and their application for profiling reactive carbonyl species and their enzymatic and non-enzymatic metabolites as an index of lipid-oxidation and oxidative stress. Limits and perspectives will be discussed.
Collapse
Affiliation(s)
- Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|