1
|
Osiński N, Majsterkiewicz K, Pakosz-Stępień Z, Azuma Y, Biela AP, Gaweł S, Heddle JG. Designed, Programmable Protein Cages Utilizing Diverse Metal Coordination Geometries Show Reversible, pH-Dependent Assembly. Macromol Rapid Commun 2024:e2400712. [PMID: 39676522 DOI: 10.1002/marc.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The rational design and production of a novel series of engineered protein cages are presented, which have emerged as versatile and adaptable platforms with significant applications in biomedicine. These protein cages are assembled from multiple protein subunits, and precise control over their interactions is crucial for regulating assembly and disassembly, such as the on-demand release of encapsulated therapeutic agents. This approach employs a homo-undecameric, ring-shaped protein scaffold with strategically positioned metal binding sites. These engineered proteins can self-assemble into highly stable cages in the presence of cobalt or zinc ions. Furthermore, the cages can be disassembled on demand by employing external triggers such as chelating agents and changes in pH. Interestingly, for certain triggers, the disassembly process is reversible, allowing the cages to reassemble upon reversal or outcompeting of triggering conditions/agents. This work offers a promising platform for the development of advanced drug delivery systems and other biomedical applications.
Collapse
Affiliation(s)
- Norbert Osiński
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, Kraków, 30384, Poland
| | - Karolina Majsterkiewicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- Postgraduate School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw, 02091, Poland
| | | | - Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
| | - Artur P Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98, Kraków, 30392, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, Kraków, 30384, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1-3LE, UK
| |
Collapse
|
2
|
Azuma Y, Gaweł S, Pasternak M, Woźnicka O, Pyza E, Heddle JG. Reengineering of an Artificial Protein Cage for Efficient Packaging of Active Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312286. [PMID: 38738740 DOI: 10.1002/smll.202312286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Indexed: 05/14/2024]
Abstract
Protein cages that readily encapsulate active enzymes of interest present useful nanotools for delivery and catalysis, wherein those with programmable disassembly characteristics serve as particularly attractive platforms. Here, a general guest packaging system based on an artificial protein cage, TRAP-cage, the disassembly of which can be induced by the addition of reducing agents, is established. In this system, TRAP-cage with SpyCatcher moieties in the lumen is prepared using genetic modification of the protein building block and assembled into a cage structure with either monovalent gold ions or molecular crosslinkers. The resulting protein cage can efficiently capture guest proteins equipped with a SpyTag by simply mixing them in an aqueous solution. This post-assembly loading system, which circumvents the exposure of guests to thiol-reactive crosslinkers, enables the packaging of enzymes possessing a catalytic cysteine or a metal cofactor while retaining their catalytic activity.
Collapse
Affiliation(s)
- Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Monika Pasternak
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| |
Collapse
|
3
|
Liang Y, Furukawa H, Sakamoto K, Inaba H, Matsuura K. Anticancer Activity of Reconstituted Ribonuclease S-Decorated Artificial Viral Capsid. Chembiochem 2022; 23:e202200220. [PMID: 35676201 PMCID: PMC9400862 DOI: 10.1002/cbic.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Ribonuclease S (RNase S) is an enzyme that exhibits anticancer activity by degrading RNAs within cancer cells; however, the cellular uptake efficiency is low due to its small molecular size. Here we generated RNase S-decorated artificial viral capsids with a size of 70-170 nm by self-assembly of the β-annulus-S-peptide followed by reconstitution with S-protein at neutral pH. The RNase S-decorated artificial viral capsids are efficiently taken up by HepG2 cells and exhibit higher RNA degradation activity in cells compared with RNase S alone. Cell viability assays revealed that RNase S-decorated capsids have high anticancer activity comparable to that of standard anticancer drugs.
Collapse
Affiliation(s)
- Yingbing Liang
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroto Furukawa
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kentarou Sakamoto
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroshi Inaba
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kazunori Matsuura
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| |
Collapse
|
4
|
Sharma M, Biela AP, Kowalczyk A, Borzęcka-Solarz K, Piette BMAG, Gaweł S, Bishop J, Kukura P, Benesch JLP, Imamura M, Scheuring S, Heddle JG. Shape-Morphing of an Artificial Protein Cage with Unusual Geometry Induced by a Single Amino Acid Change. ACS NANOSCIENCE AU 2022; 2:404-413. [PMID: 36281256 PMCID: PMC9585630 DOI: 10.1021/acsnanoscienceau.2c00019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Artificial protein
cages are constructed from multiple protein
subunits. The interaction between the subunits, notably the angle
formed between them, controls the geometry of the resulting cage.
Here, using the artificial protein cage, “TRAP-cage”,
we show that a simple alteration in the position of a single amino
acid responsible for Au(I)-mediated subunit–subunit interactions
in the constituent ring-shaped building blocks results in a more acute
dihedral angle between them. In turn, this causes a dramatic shift
in the structure from a 24-ring cage with an octahedral symmetry to
a 20-ring cage with a C2 symmetry. This symmetry change is accompanied
by a decrease in the number of Au(I)-mediated bonds between cysteines
and a concomitant change in biophysical properties of the cage.
Collapse
Affiliation(s)
- Mohit Sharma
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
- School of Molecular Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Artur P. Biela
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Agnieszka Kowalczyk
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków 30-348, Poland
| | - Kinga Borzęcka-Solarz
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | | | - Szymon Gaweł
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Joshua Bishop
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Justin L. P. Benesch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Motonori Imamura
- Department of Anesthesiology, Weill Cornell Medicine, New York City, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York 10065, United States
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York City, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York 10065, United States
| | - Jonathan G. Heddle
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| |
Collapse
|
5
|
Stupka I, Azuma Y, Biela AP, Imamura M, Scheuring S, Pyza E, Woźnicka O, Maskell DP, Heddle JG. Chemically induced protein cage assembly with programmable opening and cargo release. SCIENCE ADVANCES 2022; 8:eabj9424. [PMID: 34985943 PMCID: PMC8730398 DOI: 10.1126/sciadv.abj9424] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Engineered protein cages are promising tools that can be customized for applications in medicine and nanotechnology. A major challenge is developing a straightforward strategy for endowing cages with bespoke, inducible disassembly. Such cages would allow release of encapsulated cargoes at desired timing and location. Here, we achieve such programmable disassembly using protein cages, in which the subunits are held together by different molecular cross-linkers. This modular system enables cage disassembly to be controlled in a condition-dependent manner. Structural details of the resulting cages were determined using cryo–electron microscopy, which allowed observation of bridging cross-linkers at intended positions. Triggered disassembly was demonstrated by high-speed atomic force microscopy and subsequent cargo release using an encapsulated Förster resonance energy transfer pair whose signal depends on the quaternary structure of the cage.
Collapse
Affiliation(s)
- Izabela Stupka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Postgraduate School of Molecular Medicine, 02-091 Warsaw, Poland
| | - Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Artur P. Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Motonori Imamura
- Department of Anesthesiology, Weill Cornell Medicine, New York City, NY 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York City, NY 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Daniel P. Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan G. Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
6
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
7
|
Hou C, Xu H, Jiang X, Li Y, Deng S, Zang M, Xu J, Liu J. Virus-Based Supramolecular Structure and Materials: Concept and Prospects. ACS APPLIED BIO MATERIALS 2021; 4:5961-5974. [PMID: 35006905 DOI: 10.1021/acsabm.1c00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rodlike and spherelike viruses are various monodisperse nanoparticles that can display small molecules or polymers with unique distribution following chemical modifications. Because of the monodisperse property, aggregates in synthetic protein-polymer nanoparticles could be eliminated, thus improving the probability for application in protein-polymer drug. In addition, the monodisperse virus could direct the growth of metal materials or inorganic materials, finding applications in hydrogel, drug delivery, and optoelectronic and catalysis materials. Benefiting from the advantages, the virus or viruslike particles have been widely explored in the field of supramolecular chemistry. In this review, we describe the modification and application of virus and viruslike particles in surpramolecular structures and biomedical research.
Collapse
Affiliation(s)
- Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hanxin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shengchao Deng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Mingsong Zang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
8
|
Sun R, Lim S. Protein cages as building blocks for superstructures. ENGINEERING BIOLOGY 2021; 5:35-42. [PMID: 36969478 PMCID: PMC9996708 DOI: 10.1049/enb2.12010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
Proteins naturally self-assemble to function. Protein cages result from the self-assembly of multiple protein subunits that interact to form hollow symmetrical structures with functions that range from cargo storage to catalysis. Driven by self-assembly, building elegant higher-order superstructures with protein cages as building blocks has been an increasingly attractive field in recent years. It presents an engineering challenge not only at the molecular level but also at the supramolecular level. The higher-order constructs are proposed to provide access to diverse functional materials. Focussing on design strategy as a perspective, current work on protein cage supramolecular self-assembly are reviewed from three principles that are electrostatic, metal-ligand coordination and inherent symmetry. The review also summarises possible applications of the superstructure architecture built using modified protein cages.
Collapse
Affiliation(s)
- Ruoxuan Sun
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore
| | - Sierin Lim
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore
| |
Collapse
|