1
|
Bruce G, Bagherpour S, Duch M, Plaza JA, Stolnik S, Pérez-García L. Cuboids Prevail When Unraveling the Influence of Microchip Geometry on Macrophage Interactions and Metabolic Responses. ACS Biomater Sci Eng 2024; 10:5689-5700. [PMID: 39167686 PMCID: PMC11388147 DOI: 10.1021/acsbiomaterials.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Drug delivery advances rely on using nano- and microsized carriers to transfer therapeutic molecules, although challenges persist in increasing the availability of new and even approved pharmaceutical products. Particle shape, a critical determinant in how these carriers distribute within the body after administration, raises opportunities of using, for instance, micrometer-sized nonspherical particles for vascular targeting and thereby creating new prospects for precise drug delivery to specific targeted areas. The versatility of polycrystalline silicon microfabrication allows for significant variation in the size and shape of microchips, and so, in the current work, photolithography was employed to create differently shaped polysilicon microchips, including cuboids, cubes, bars, and cylinders, to explore the influence of particle shape on cellular interactions. These microchips with different shapes and lateral dimensions, accounting for surface areas in the range of ca. 15 to 120 μm2 and corresponding total volumes of 0.4 to 27 μm3, serve as ideal models for investigating their interactions with macrophages with diameters of ca. 20 μm. Side-scattering imaging flow cytometry was employed for studying the interaction of label-free prepared microchips with RAW 264.7 macrophages. Using a dose of 3 microchips per cell, results show that cuboids exhibit the highest cellular association (ca. 25%) and uptake (ca. 20%), suggesting their potential as efficient carriers for targeted drug delivery to macrophages. Conversely, similarly sized cylinders and bar-shaped microchips exhibit lower uptakes of about 8% and about 6%, respectively, indicating potential benefits in evading macrophage recognition. On average, 1-1.5 microchips were internalized, and ca. 1 microchip was surface-bound per cell, with cuboids showing the higher values overall. Macrophages respond to microchips by increasing their metabolic activity and releasing low levels of intracellular enzymes, indicating reduced toxicity. Interestingly, increasing the particle dose enhances macrophage metabolic activity without significantly affecting enzyme release.
Collapse
Affiliation(s)
- Gordon Bruce
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Marta Duch
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José Antonio Plaza
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Snow Stolnik
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
2
|
Duan W, Zhao J, Gao Y, Xu K, Huang S, Zeng L, Shen JW, Zheng Y, Wu J. Porous silicon-based sensing and delivery platforms for wound management applications. J Control Release 2024; 371:530-554. [PMID: 38857787 DOI: 10.1016/j.jconrel.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Wound management remains a great challenge for clinicians due to the complex physiological process of wound healing. Porous silicon (PSi) with controlled pore morphology, abundant surface chemistry, unique photonic properties, good biocompatibility, easy biodegradation and potential bioactivity represent an exciting class of materials for various biomedical applications. In this review, we focus on the recent progress of PSi in the design of advanced sensing and delivery systems for wound management applications. Firstly, we comprehensively introduce the common type, normal healing process, delaying factors and therapeutic drugs of wound healing. Subsequently, the typical fabrication, functionalization and key characteristics of PSi have been summarized because they provide the basis for further use as biosensing and delivery materials in wound management. Depending on these properties, the rise of PSi materials is evidenced by the examples in literature in recent years, which has emphasized the robust potential of PSi for wound monitoring, treatment and theranostics. Finally, challenges and opportunities for the future development of PSi-based sensors and delivery systems for wound management applications are proposed and summarized. We hope that this review will help readers to better understand current achievements and future prospects on PSi-based sensing and delivery systems for advanced wound management.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Longhuan Zeng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yongke Zheng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China.
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Mo Y, Yang Y, Zeng J, Ma W, Guan Y, Guo J, Wu X, Liu D, Feng L, Jia X, Yang B. Enhancing the Biopharmacological Characteristics of Asperosaponin VI: Unveiling Dynamic Self-Assembly Phase Transitions in the Gastrointestinal Environment. Int J Nanomedicine 2023; 18:7335-7358. [PMID: 38084126 PMCID: PMC10710790 DOI: 10.2147/ijn.s436372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Asperosaponin VI (ASP VI) as an active ingredient of Dipsacus asperoides, which has a wide range of biological and pharmacological activity. However, its development and application are restricted due to the poor gastrointestinal permeability and oral bioavailability. This investigation aims to reveal the influence of the self-assembled structure by the interaction between ASP VI and endogenous components NaTC and/or DOPC in the gastrointestinal environment on its biopharmaceutical properties, and novelty elucidated the molecular mechanism for the formation of self-assembled nanomicelles. Methods This change in phase state in gastrointestinal fluids is characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). UPLC-Q-TOF-MS was used to analyze the composition of phase components and the exposure of nanomicelles in vivo. Molecular dynamics simulation (MDS) was applied to preliminarily elucidate the self-assembly mechanism of ASP VI in the gastrointestinal environment. Furthermore, theS8 promoting absorption mechanism of nanomicelles were investigated through in vivo pharmacokinetic experiments, parallel artificial membrane permeability assay (PAMPA), quadruple single-pass intestinal perfusion in rats, and Caco-2 cell monolayer model. Results We demonstrated that the ASP VI could spontaneously form dynamic self-assembled structures with sodium taurocholate (NaTC) and dipalmitoyl phosphatidylcholine (DOPC) during gastrointestinal solubilization, which promoted the gastrointestinal absorption and permeability of ASP VI and increased its exposure in vivo, thus improving the biopharmacological characteristics of ASP VI. Moreover, ASP VI-NaTC-DOPC-self-assembled nanostructures (ASP VI-NaTC-DOPC-SAN) manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy, and this study also preliminarily revealed the mechanism of self-assembly formation of ASP VI with endogenous components NaTC and DOPC driven by electrostatic and hydrogen bonding interactions. Conclusion This study provides evidence that the dynamic self-assembled phase transition may play a key role in improving the biopharmacological characteristics of insoluble or low permeability active ingredients during the gastrointestinal dissolution of Chinese medicines.
Collapse
Affiliation(s)
- Yulin Mo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Weikun Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yuxin Guan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingxi Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
4
|
Li Q, Sun W, Li Z, Chen Z. Fluorinated covalent-organic polymers as stationary phase for analysis of organic fluorides by open-tubular capillary electrochromatography. J Sep Sci 2023; 46:e2300138. [PMID: 37269198 DOI: 10.1002/jssc.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Fluorinated porous materials, which can provide specific fluorine-fluorine interaction, hold great promise for fluoride analysis. Here, a novel fluorinated covalent-organic polymer was prepared by using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,3,5,6-tetrafluorotelephtal aldehyde as the precursors and introduced as stationary phase for open-tubular capillary electrochromatography. The as-synthesized fluorinated covalent-organic polymer and the modified capillary column were characterized by infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Based on strong hydrophobic interaction and fluorine-fluorine interaction provided by fluorinated covalent-organic polymer coating layer, the modified column showed powerful separation selectivity toward hydrophobic compounds, organic fluorides, and fluorinated pesticides. Additionally, the fluorinated covalent-organic polymer with good porosity and regular shape was uniformly and tightly coated on the capillary inner wall. The obtained highest column efficiency could reach up to 1.2 × 105 plates⋅m-1 for fluorophenol. The loading capacity of the modified column can reach 141 pmol for trifluorotoluene. Besides, the relative standard deviations of retention times for intraday run (n = 5), interday run (n = 3), and between columns (n = 3) were all less than 2.55%. Significantly, this novel fluorinated material-based stationary phase shows great application potential in fluorides analysis.
Collapse
Affiliation(s)
- Qiaoyan Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, P. R. China
| | - Wenqi Sun
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, P. R. China
| | - Zhentao Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Zilin Chen
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, P. R. China
| |
Collapse
|
5
|
Zou J, Stammers AC, Taladriz-Sender A, Withers JM, Christie I, Santana Vega M, Aekbote BL, Peveler WJ, Rusling DA, Burley GA, Clark AW. Fluorous-Directed Assembly of DNA Origami Nanostructures. ACS NANO 2023; 17:752-759. [PMID: 36537902 PMCID: PMC9835977 DOI: 10.1021/acsnano.2c10727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 05/27/2023]
Abstract
An orthogonal, noncovalent approach to direct the assembly of higher-order DNA origami nanostructures is described. By incorporating perfluorinated tags into the edges of DNA origami tiles we control their hierarchical assembly via fluorous-directed recognition. When we combine this approach with Watson-Crick base-pairing we form discrete dimeric constructs in significantly higher yield (8x) than when either molecular recognition method is used in isolation. This integrated "catch-and-latch" approach, which combines the strength and mobility of the fluorous effect with the specificity of base-pairing, provides an additional toolset for DNA nanotechnology, one that enables increased assembly efficiency while requiring significantly fewer DNA sequences. As a result, our integration of fluorous-directed assembly into origami systems represents a cheap, atom-efficient means to produce discrete superstructures.
Collapse
Affiliation(s)
- Jiajia Zou
- James
Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| | - Ashley C. Stammers
- James
Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| | - Andrea Taladriz-Sender
- Department
of Pure Applied Chemistry, Thomas Graham Building, 295 Cathedral Street, University of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Jamie M. Withers
- James
Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| | - Iain Christie
- James
Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| | - Marina Santana Vega
- James
Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| | - Badri L. Aekbote
- James
Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| | - William J. Peveler
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - David A. Rusling
- School
of Pharmacy and Biomedical Sciences, St. Michael’s Building, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Glenn A. Burley
- Department
of Pure Applied Chemistry, Thomas Graham Building, 295 Cathedral Street, University of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Alasdair W. Clark
- James
Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| |
Collapse
|
6
|
Synthesis and Evaluation of Self-Assembling Properties of 3-(3,5-Difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium Iodides. MOLBANK 2022. [DOI: 10.3390/m1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A synthesis of 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides with ethyl or nonyl ester groups at positions 3 and 5 was performed. Treatment of the corresponding 2’,6’-dimethyl-1’,4’-dihydro-[3,4’-bipyridine]-3’,5’-dicarboxylates with Selectfluor® followed by quaternization of pyridine moiety in the obtained dialkyl 2,4-diacetyl-2,4-difluoro-3-(pyridin-3-yl)pentanedioates with methyl iodide gave the desired 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides. This type of compound would be useful as synthetic lipids for further development of the delivery systems. The obtained target compounds were fully characterized by 1H NMR, 19F NMR, 13C NMR, HRMS, IR and UV data. The estimation of self-assembling properties and characterization of the nanoparticles obtained by ethanol solution injection in an aqueous media were performed by dynamic light scattering (DLS) measurements. DLS measurement data showed that 3-(3,5-difluoro-3,5-bis((nonyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide created liposomes with the average diameter of 300–400 nm and polydispersity index (PDI) value around 0.30–0.40, while 3-(3,5-difluoro-3,5-bis((ethyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide formed a heterogeneous sample with PDI value 1, which was not prospective for delivery system development.
Collapse
|