1
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
2
|
Bai B, Zhang C, Dou Y, Kong L, Wang L, Wang S, Li J, Zhou Y, Liu L, Liu B, Zhang X, Hadar I, Bekenstein Y, Wang A, Yin Z, Turyanska L, Feldmann J, Yang X, Jia G. Atomically flat semiconductor nanoplatelets for light-emitting applications. Chem Soc Rev 2023; 52:318-360. [PMID: 36533300 DOI: 10.1039/d2cs00130f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.
Collapse
Affiliation(s)
- Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Yongjiang Dou
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Jun Li
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Yi Zhou
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Ido Hadar
- Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehonadav Bekenstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aixiang Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, ACT 2601, Australia
| | - Lyudmila Turyanska
- Faculty of Engineering, The University of Nottingham, Additive Manufacturing Building, Jubilee Campus, University Park, Nottingham NG7 2RD, UK
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, Munich 80539, Germany
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
3
|
Zhu J, Cao Z, Zhu Y, Rowell N, Li Y, Wang S, Zhang C, Jiang G, Zhang M, Zeng J, Yu K. Transformation Pathway from CdSe Magic‐Size Clusters with Absorption Doublets at 373/393 nm to Clusters at 434/460 nm. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jinming Zhu
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Zhaopeng Cao
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongcheng Zhu
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Nelson Rowell
- Metrology Research Centre National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Yan Li
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shanling Wang
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Jianrong Zeng
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Kui Yu
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
| |
Collapse
|
4
|
Zhu J, Cao Z, Zhu Y, Rowell N, Li Y, Wang S, Zhang C, Jiang G, Zhang M, Zeng J, Yu K. Transformation Pathway from CdSe Magic-Size Clusters with Absorption Doublets at 373/393 nm to Clusters at 434/460 nm. Angew Chem Int Ed Engl 2021; 60:20358-20365. [PMID: 33960093 DOI: 10.1002/anie.202104986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Divergent interpretations have appeared in the literature regarding the structural nature and evolutionary behavior for photoluminescent CdSe nanospecies with sharp doublets in optical absorption. We report a comprehensive description of the transformation pathway from one CdSe nanospecies displaying an absorption doublet at 373/393 nm to another species with a doublet at 433/460 nm. These two nanospecies are zero-dimensional (0D) magic-size clusters (MSCs) with 3D quantum confinement, and are labeled dMSC-393 and dMSC-460, respectively. Synchrotron-based small-angle X-ray scattering (SAXS) returns a radius of gyration of 0.92 nm for dMSC-393 and 1.14 nm for dMSC-460, and indicates that both types are disc shaped with the exponent of the SAXS form factor equal to 2.1. The MSCs develop from their unique counterpart precursor compounds (PCs), which are labeled PC-393 and PC-460, respectively. For the dMSC-393 to dMSC-460 transformation, the proposed PC-enabled pathway is comprised of three key steps, dMSC-393 to PC-393 (Step 1), PC-393 to PC-460 (Step 2 involving monomer addition), and PC-460 to dMSC-460 (Step 3). The present study provides a framework for understanding the PC-based evolution of MSCs and how PCs enable transformations between MSCs.
Collapse
Affiliation(s)
- Jinming Zhu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhaopeng Cao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongcheng Zhu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Yan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shanling Wang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Jianrong Zeng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Kui Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
5
|
Wang Z, Wang T, Zhang C, Zhang M, Chen X, Fan H, Huang W, Luan C, Yu K. Evolution of Two Types of ZnTe Magic-Size Clusters Displaying Sharp Doublets in Optical Absorption. JOURNAL OF PHYSICAL CHEMISTRY LETTERS 2021; 12:4762-4768. [PMID: 33983032 DOI: 10.1021/acs.jpclett.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The two-pathway model proposed for colloidal semiconductor metal chalcogenide (ME) quantum dots (QDs) and magic-size clusters (MSCs) is demonstrated for ZnTe. Two new types of ZnTe MSCs have been found, which exhibit sharp optical absorption doublets peaking at 356/389 and 389/420 nm. Labeled dMSC-389 and dMSC-420, respectively, they were produced from reaction mixtures in 1-octadecene (ODE) of zinc oleate (Zn(OA)2), tri-n-octylphosphine telluride (TeTOP), diphenylphosphine (HPPh2), and acetic acid (HOAc, CH3COOH). The collective use of HOAc and HPPh2 enabled the exclusive production of dMSC-389 and dMSC-420 from reaction mixtures that had high Zn-to-Te feed molar ratios and a high Te feed concentration of 60 mmol/kg. The present findings demonstrate the utility of HOAc in synthesizing MSCs displaying a sharp absorption doublet, as well as of a secondary phosphine that decreases the temperature at which the M-E covalent bonds form.
Collapse
Affiliation(s)
- Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Tinghui Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Chunchun Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Hongsong Fan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065 Sichuan, P. R. China.,Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| |
Collapse
|