1
|
Gholami R, Lawan I, Luengrojanakul P, Ebrahimi S, Ahn CH, Rimdusit S. Development of a laser induced graphene (LIG) and polylactic acid (PLA) shape memory polymer composite with simultaneous multi-stimuli response and deformation self-sensing characteristics. NANOSCALE ADVANCES 2024; 6:4865-4876. [PMID: 39323418 PMCID: PMC11421537 DOI: 10.1039/d4na00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
This study presents the integration of laser-induced graphene (LIG) on a polylactic acid (PLA) substrate to create a novel shape memory polymer composite (SMPC) with multi-stimuli response and deformation self-sensing characteristics. The LIG was initially engraved on a commercial polyimide film and subsequently transferred to the PLA substrate through hot compression. Raman spectra analysis confirmed the successful engraving of the LIG, exhibiting the typical characteristic peaks. Durability tests revealed that the transferred LIG adhered well to the PLA substrate. Additionally, the transferred LIG demonstrated a sheet resistance of 40.3 Ω sq-1, which facilitated the electrical actuation of the LIG/PLA composite through Joule heating, allowing precise temperature control by manipulating the applied electrical power. An optimum electrical power of 0.95 W was identified to rapidly reach the actuation temperature without exceeding 80 °C. The study also demonstrated the LIG/PLA composite's responsiveness to infrared (IR) light, attributed to photothermal conversion behavior of LIG. An optimum IR intensity of 85 mW cm-2 was established for reaching the actuation temperature without surpassing 80 °C. This multi-stimulus functionality was achieved alongside real-time monitoring of the shape recovery ratio, enabled by the piezoresistive properties of LIG, which allowed for recording electrical resistance changes during recovery. This approach eliminates the need for external components and offers a straightforward fabrication process. The ability to actuate and sense deformation using a single, integrated LIG pattern opens new opportunities for developing advanced, multi-responsive, and self-sensing shape memory polymer composites.
Collapse
Affiliation(s)
- Reza Gholami
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University Bangkok 10330 Thailand
| | - Ibrahim Lawan
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University Bangkok 10330 Thailand
| | - Panuwat Luengrojanakul
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University Bangkok 10330 Thailand
| | - Sahar Ebrahimi
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University Bangkok 10330 Thailand
| | - Cheol-Hee Ahn
- Department of Materials Science and Engineering, Seoul National University Seoul 08826 Korea
| | - Sarawut Rimdusit
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
2
|
Emelianov AV, Pettersson M, Bobrinetskiy II. Ultrafast Laser Processing of 2D Materials: Novel Routes to Advanced Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402907. [PMID: 38757602 DOI: 10.1002/adma.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Ultrafast laser processing has emerged as a versatile technique for modifying materials and introducing novel functionalities. Over the past decade, this method has demonstrated remarkable advantages in the manipulation of 2D layered materials, including synthesis, structuring, functionalization, and local patterning. Unlike continuous-wave and long-pulsed optical methods, ultrafast lasers offer a solution for thermal heating issues. Nonlinear interactions between ultrafast laser pulses and the atomic lattice of 2D materials substantially influence their chemical and physical properties. This paper highlights the transformative role of ultrafast laser pulses in maskless green technology, enabling subtractive, and additive processes that unveil ways for advanced devices. Utilizing the synergetic effect between the energy states within the atomic layers and ultrafast laser irradiation, it is feasible to achieve unprecedented resolutions down to several nanometers. Recent advancements are discussed in functionalization, doping, atomic reconstruction, phase transformation, and 2D and 3D micro- and nanopatterning. A forward-looking perspective on a wide array of applications of 2D materials, along with device fabrication featuring novel physical and chemical properties through direct ultrafast laser writing, is also provided.
Collapse
Affiliation(s)
- Aleksei V Emelianov
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Mika Pettersson
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ivan I Bobrinetskiy
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| |
Collapse
|
3
|
Zhu D, Qiao M, Yan J, Xie J, Guo H, Deng S, He G, Zhao Y, Luo M. Three-dimensional patterning of MoS 2 with ultrafast laser. NANOSCALE 2023; 15:14837-14846. [PMID: 37646207 DOI: 10.1039/d3nr01669b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Transition metal chalcogenides, a special two-dimensional (2D) material emerged in recent years, possess unique optoelectronic properties and have been used to fabricate various optoelectronic devices. While it is essential to manufacture multifunctional devices with complex nanostructures for practical applications, 2D material devices present a tendency toward miniaturization. However, the controllable fabrication of complex nanostructures on 2D materials remains a challenge. Herein, we propose a method to create designed three-dimensional (3D) patterns on the MoS2 surface by modulating the interaction between an ultrafast laser and MoS2. Three different nanostructures, including flat, bulge, and craters, can be fabricated through laser-induced surface morphology transformation, which is related to thermal diffusion, oxidation, and ablation processes. The MoS2 field effect transistor is fabricated by ultrafast laser excitation which exhibits enhanced electrical properties. This study provides a promising strategy for 3D pattern fabrication, which is helpful for the development of multifunctional microdevices.
Collapse
Affiliation(s)
- Dezhi Zhu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ming Qiao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jianfeng Yan
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jiawang Xie
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Heng Guo
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Shengfa Deng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Guangzhi He
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuzhi Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ma Luo
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Katsiaounis S, Chourdakis N, Michail E, Fakis M, Polyzos I, Parthenios J, Papagelis K. Graphene nano-sieves by femtosecond laser irradiation. NANOTECHNOLOGY 2022; 34:105302. [PMID: 36542345 DOI: 10.1088/1361-6528/aca7cb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The formation of nano-pores in graphene crystal structure is alternative way to engineer its electronic properties, chemical reactivity, and surface interactions, enabling applications in technological fields such as sensing, energy and separation. The past few years, nano-perforation of graphene sheets has been accomplished by a variety of different methods suffering mainly from poor scalability and cost efficiency issues. In this work, we introduce an experimental protocol to engineer nanometer scale pores in CVD graphene membranes under ambient conditions, using low power ultra-short laser pulses and overcoming the drawbacks of other perforation techniques. Using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) we visualized and quantified the nanopore network while Raman spectroscopy is utilized to correlate the nano-perforated area with the nanotopographic imaging. We suggest that Raman imaging provides the identification of nanoporous area and, in combination with AFM, we provide solid evidence for the reproducibility of the method, since under these experimental conditions, nanopores of a certain size distribution are formed.
Collapse
Affiliation(s)
- S Katsiaounis
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences, PO Box 1414, GR-26504 Patras, Greece
- Department of Physics, University of Patras, GR-26504 Patras, Greece
| | - N Chourdakis
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences, PO Box 1414, GR-26504 Patras, Greece
| | - E Michail
- Department of Physics, University of Patras, GR-26504 Patras, Greece
| | - M Fakis
- Department of Physics, University of Patras, GR-26504 Patras, Greece
| | - I Polyzos
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences, PO Box 1414, GR-26504 Patras, Greece
| | - J Parthenios
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences, PO Box 1414, GR-26504 Patras, Greece
| | - K Papagelis
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences, PO Box 1414, GR-26504 Patras, Greece
- School of Physics, Department of Solid-State Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
5
|
Akkanen STM, Fernandez HA, Sun Z. Optical Modification of 2D Materials: Methods and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110152. [PMID: 35139583 DOI: 10.1002/adma.202110152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
2D materials are under extensive research due to their remarkable properties suitable for various optoelectronic, photonic, and biological applications, yet their conventional fabrication methods are typically harsh and cost-ineffective. Optical modification is demonstrated as an effective and scalable method for accurate and local in situ engineering and patterning of 2D materials in ambient conditions. This review focuses on the state of the art of optical modification of 2D materials and their applications. Perspectives for future developments in this field are also discussed, including novel laser tools, new optical modification strategies, and their emerging applications in quantum technologies and biotechnologies.
Collapse
Affiliation(s)
| | - Henry Alexander Fernandez
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| |
Collapse
|