1
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Zhang X, Bai J, Wang R, Wei X, Chen M, Yang T, Wang J. Biological elemental analysis: A cute‐meet of microfluidic device to inductively coupled plasma mass spectrometry. VIEW 2022. [DOI: 10.1002/viw.20220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Junjie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Rui Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences Northeastern University Shenyang Liaoning China
| |
Collapse
|
4
|
Serov N, Vinogradov V. Artificial intelligence to bring nanomedicine to life. Adv Drug Deliv Rev 2022; 184:114194. [PMID: 35283223 DOI: 10.1016/j.addr.2022.114194] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
The technology of drug delivery systems (DDSs) has demonstrated an outstanding performance and effectiveness in production of pharmaceuticals, as it is proved by many FDA-approved nanomedicines that have an enhanced selectivity, manageable drug release kinetics and synergistic therapeutic actions. Nonetheless, to date, the rational design and high-throughput development of nanomaterial-based DDSs for specific purposes is far from a routine practice and is still in its infancy, mainly due to the limitations in scientists' capabilities to effectively acquire, analyze, manage, and comprehend complex and ever-growing sets of experimental data, which is vital to develop DDSs with a set of desired functionalities. At the same time, this task is feasible for the data-driven approaches, high throughput experimentation techniques, process automatization, artificial intelligence (AI) technology, and machine learning (ML) approaches, which is referred to as The Fourth Paradigm of scientific research. Therefore, an integration of these approaches with nanomedicine and nanotechnology can potentially accelerate the rational design and high-throughput development of highly efficient nanoformulated drugs and smart materials with pre-defined functionalities. In this Review, we survey the important results and milestones achieved to date in the application of data science, high throughput, as well as automatization approaches, combined with AI and ML to design and optimize DDSs and related nanomaterials. This manuscript mission is not only to reflect the state-of-art in data-driven nanomedicine, but also show how recent findings in the related fields can transform the nanomedicine's image. We discuss how all these results can be used to boost nanomedicine translation to the clinic, as well as highlight the future directions for the development, data-driven, high throughput experimentation-, and AI-assisted design, as well as the production of nanoformulated drugs and smart materials with pre-defined properties and behavior. This Review will be of high interest to the chemists involved in materials science, nanotechnology, and DDSs development for biomedical applications, although the general nature of the presented approaches enables knowledge translation to many other fields of science.
Collapse
Affiliation(s)
- Nikita Serov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg 191002, Russian Federation
| | - Vladimir Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg 191002, Russian Federation.
| |
Collapse
|
5
|
Zirath H, Spitz S, Roth D, Schellhorn T, Rothbauer M, Müller B, Walch M, Kaur J, Wörle A, Kohl Y, Mayr T, Ertl P. Bridging the academic-industrial gap: application of an oxygen and pH sensor-integrated lab-on-a-chip in nanotoxicology. LAB ON A CHIP 2021; 21:4237-4248. [PMID: 34605521 DOI: 10.1039/d1lc00528f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Translation of advanced cell-based assays exhibiting a higher degree of automation, miniaturization, and integration of complementary sensing functions is mainly limited by the development of industrial-relevant prototypes that can be readily produced in larger volumes. Despite the increasing number of academic publications in recent years, the manufacturability of these microfluidic cell cultures systems is largely ignored, thus severely restricting their implementation in routine toxicological applications. We have developed a dual-sensor integrated microfluidic cell analysis platform using industrial specifications, materials, and fabrication methods to conduct risk assessment studies of engineered nanoparticles to overcome this academic-industrial gap. Non-invasive and time-resolved monitoring of cellular oxygen uptake and metabolic activity (pH) in the absence and presence of nanoparticle exposure is accomplished by integrating optical sensor spots into a cyclic olefin copolymer (COC)-based microfluidic platform. Results of our nanotoxicological study, including two physiological cell barriers that are essential in the protection from exogenous factors, the intestine (Caco-2) and the vasculature (HUVECs) showed that the assessment of the cells' total energy metabolism is ideally suited to rapidly detect cytotoxicities. Additional viability assay verification using state-of-the-art dye exclusion assays for nanotoxicology demonstrated the similarity and comparability of our results, thus highlighting the benefits of employing a compact and cost-efficient microfluidic dual-sensor platform as a pre-screening tool in nanomaterial risk assessment and as a rapid quality control measure in medium to high-throughput settings.
Collapse
Affiliation(s)
- Helene Zirath
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Doris Roth
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tobias Schellhorn
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
| | - Mario Rothbauer
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Bernhard Müller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Manuel Walch
- kdg opticomp GmbH, Am kdg Campus, Dorf 91, 6652 Elbigenalp, Austria
| | - Jatinder Kaur
- kdg opticomp GmbH, Am kdg Campus, Dorf 91, 6652 Elbigenalp, Austria
| | - Alexander Wörle
- kdg opticomp GmbH, Am kdg Campus, Dorf 91, 6652 Elbigenalp, Austria
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
6
|
Gupta G, Vallabani S, Bordes R, Bhattacharya K, Fadeel B. Development of Microfluidic, Serum-Free Bronchial Epithelial Cells-on-a-Chip to Facilitate a More Realistic In vitro Testing of Nanoplastics. FRONTIERS IN TOXICOLOGY 2021; 3:735331. [PMID: 35295110 PMCID: PMC8915849 DOI: 10.3389/ftox.2021.735331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Most cell culture models are static, but the cellular microenvironment in the body is dynamic. Here, we established a microfluidic-based in vitro model of human bronchial epithelial cells in which cells are stationary, but nutrient supply is dynamic, and we used this system to evaluate cellular uptake of nanoparticles. The cells were maintained in fetal calf serum-free and bovine pituitary extract-free cell culture medium. BEAS-2B, an immortalized, non-tumorigenic human cell line, was used as a model and the cells were grown in a chip within a microfluidic device and were briefly infused with amorphous silica (SiO2) nanoparticles or polystyrene (PS) nanoparticles of similar primary sizes but with different densities. For comparison, tests were also performed using static, multi-well cultures. Cellular uptake of the fluorescently labeled particles was investigated by flow cytometry and confocal microscopy. Exposure under dynamic culture conditions resulted in higher cellular uptake of the PS nanoparticles when compared to static conditions, while uptake of SiO2 nanoparticles was similar in both settings. The present study has shown that it is feasible to grow human lung cells under completely animal-free conditions using a microfluidic-based device, and we have also found that cellular uptake of PS nanoparticles aka nanoplastics is highly dependent on culture conditions. Hence, traditional cell cultures may not accurately reflect the uptake of low-density particles, potentially leading to an underestimation of their cellular impact.
Collapse
Affiliation(s)
- Govind Gupta
- Unit of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Srikanth Vallabani
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Romain Bordes
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Kunal Bhattacharya
- Unit of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Unit of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|