1
|
Premanand G, Jana D, Das SK. Oxidation of Ni(H 2O) 6@MoO 3 to Ni 2O 3/MoO 3 Composites by Aerial Annealing: Electrocatalytic Hydrogen Evolution. Chem Asian J 2024:e202401172. [PMID: 39604814 DOI: 10.1002/asia.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Molybdenum trioxide (α-MoO3) is a promising and inexpensive alternative to platinum group metals (PGMs), for electrocatalytic hydrogen evolution reaction (HER). However, to make it a viable candidate for electrocatalytic systems, we must address the hurdles associated with its inferior electrical conductivity and lack of active sites. Unlike Mo-based compounds such as MoS₂ and MoSe₂, which possess catalytically active edges, α-MoO₃ lacks inherent active sites for HER. Previous studies have employed various strategies to activate MoO₃ for HER, yet its activation in near-neutral conditions remain largely unexplored. In this study, a previously known α-MoO3 intercalating {Ni(H2O)6}2+, [MoVI 2O6(CH3COO){NiII(H2O)6}0.5] ⋅ H2O (Ni(H2O)6@MoO3) is prepared via a simple and scalable room-temperature aqueous synthesis. In the subsequent aerial thermal annealing process at 300, 400 and 500 °C, Ni(H2O)6@MoO3 acts as a self-sacrificial template, yielding mixed metal oxide composites of nickel and molybdenum (named as MoO3-300, MoO3-400 and MoO3-500). The HR-TEM and XPS analyses confirm the formation of the Ni2O3 phase alongside the orthorhombic α-MoO3. The annealing temperature plays a key role in the crystallinity, phase, morphology, and electrocatalytic performance of the resulting composites. The composite formed at 400 °C (MoO3-400) shows the best electrocatalytic performance among them, showcasing a fivefold enhancement in the HER current density as compared to that shown by commercially available α-MoO3 in mildly acidic acetate buffer. The enhanced performance towards HER by MoO3-400 could be attributed to the nanostructured morphology attained via thermal treatment, which provides greater access to the surface sites and the synergistic interaction between the nickel oxide phases and MoO₃ structure, enabling an intermediate pH HER activity rarely reported for molybdenum oxide materials.
Collapse
Affiliation(s)
- Gopika Premanand
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Debu Jana
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
2
|
Del Piero JVB, Miwa RH, Scopel WL. Vanadium incorporation in 2D-layered MoSe 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:045503. [PMID: 39442551 DOI: 10.1088/1361-648x/ad8abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Recent advances in experimental techniques have made it possible to manipulate the structural and electronic properties of two-dimensional layered materials (2DM) through interaction with foreign atoms. Using quantum mechanics calculations based on the density functional theory, we explored the dependency of the structural, energetic, electronic, and magnetic properties of the interaction between Vanadium (V) atoms and monolayer and bilayer MoSe2. Spin-polarized metallic behavior was observed for high V concentration, and a semiconductor/metal interface emerged due to V adsorption on top of BL MoSe2. Our research demonstrated that the functionalization of 2D materials makes an important contribution to the design of spintronic devices based on a 2D-layered materials platform.
Collapse
Affiliation(s)
- João V B Del Piero
- Departamento de Física, Universidade Federal do Espírito Santo-UFES, 29075-910 Vitória, ES, Brazil
| | - Roberto H Miwa
- Instituto de Física, Universidade Federal de Uberlândia-UFU, 38400-902 Uberlândia, MG, Brazil
| | - Wanderlã L Scopel
- Departamento de Física, Universidade Federal do Espírito Santo-UFES, 29075-910 Vitória, ES, Brazil
| |
Collapse
|
3
|
Li M, Jiang Y, Ju H, He S, Jia C, Guo X. Electronic Devices Based on Heterostructures of 2D Materials and Self-Assembled Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402857. [PMID: 38934535 DOI: 10.1002/smll.202402857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
2D materials (2DMs), known for their atomically ultrathin structure, exhibit remarkable electrical and optical properties. Similarly, molecular self-assembled monolayers (SAMs) with comparable atomic thickness show an abundance of designable structures and properties. The strategy of constructing electronic devices through unique heterostructures formed by van der Waals assembly between 2DMs and molecular SAMs not only enables device miniaturization, but also allows for convenient adjustment of their structures and functions. In this review, the fundamental structures and fabrication methods of three different types of electronic devices dominated by 2DM-SAM heterojunctions with varying architectures are timely elaborated. Based on these heterojunctions, their fundamental functionalities and characteristics, as well as the regulation of their performance by external stimuli, are further discussed.
Collapse
Affiliation(s)
- Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Yu Jiang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Suhang He
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
4
|
Ganesh PS, Dhand V, Kim SY, Kim S. Design and synthesis of active site rich cobalt tin sulfide nano cubes: An effective electrochemical sensing interface to monitor environmentally hazardous phenolic isomers. Microchem J 2024; 200:110308. [DOI: 10.1016/j.microc.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
5
|
Chencheni A, Belkhiri S, Tarchoun AF, Abdelaziz A, Bessa W, Boucheffa Y, Trache D. Unravelling the thermal behavior and kinetics of unsaturated polyester resin supplemented with organo-nanoclay. RSC Adv 2024; 14:517-528. [PMID: 38173583 PMCID: PMC10759040 DOI: 10.1039/d3ra06076d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The integration of nanoclays within polymeric systems to develop high-performance materials is an emerging research field that has garnered significant attention. In this context, an organically modified montmorillonite (OMMT) is utilized as a reinforcing agent for unsaturated polyester resin (UPR) with loads of 1%, 3%, and 5 wt%. The modification of montmorillonite nanoclay (MMT) using a quaternary ammonium compound is performed through an effective repetitive modification process under reflux conditions. The curing behavior of the unsaturated polyester resin containing organically modified clay catalyzed with methyl ethyl ketone peroxide (MEKP) initiator and promoted by cobalt naphthenate accelerator is investigated using dynamic differential scanning calorimetry (DSC) followed by kinetic analysis using isoconversional methods. The dynamic DSC curing curves showed a bimodal exothermic peak, where two independent reactions, namely, redox and thermal decomposition of the initiator occurred. In this study, novel insights into the curing reaction of the studied UPR and UPR/OMMT systems have been revealed through the application of the Trache-Abdelaziz-Siwani (TAS) and Sbirrazzuoli (VYA/CE) isoconversional methods. These methods have enabled the elucidation of the intricate mechanisms and phenomena that impact the curing reaction, including the dilution effect in the redox reaction and the diffusion phenomenon at the end of the thermal decomposition reaction. The incorporation of nanoclay into unsaturated polyester resin (UPR) resulted in a reduction in the activation energy for both the redox and thermal reactions. Specifically, the energetic barrier decreased from 93.85 and 101.58 kJ mol-1 for pristine UPR to 60.71 and 72.93 kJ mol-1 for UPR/OMMT-5 in the redox and thermal reactions, respectively. The addition of OMMT caused a significant decrease in the pre-exponential factor. The values of UPR/OMMT-5 were 2.75 × 105 and 5.50 × 106 for the redox and thermal decomposition reactions, respectively, compared to 1.41 × 1012 and 5.13 × 1013 for UPR. The thermogravimetric analysis demonstrated that UPR/OMMT systems were more stable than UPR.
Collapse
Affiliation(s)
- Ayoub Chencheni
- Energetic Propulsion Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique BP 17, Bordj El-Bahri Algiers 16046 Algeria
| | - Samir Belkhiri
- Energetic Propulsion Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique BP 17, Bordj El-Bahri Algiers 16046 Algeria
| | - Ahmed Fouzi Tarchoun
- Energetic Propulsion Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique BP 17, Bordj El-Bahri Algiers 16046 Algeria
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique BP 17, Bordj El-Bahri Algiers 16046 Algeria
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique BP 17, Bordj El-Bahri Algiers 16046 Algeria
| | - Youcef Boucheffa
- Faculty of Chemistry, University of Sciences and Technology Houari Boumediene Bab El-Zouar Algiers Algeria
| | - Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique BP 17, Bordj El-Bahri Algiers 16046 Algeria
| |
Collapse
|
6
|
Ji JY, Bao T, Wang H, Xu Y, Zhang D, Xue QK. Homogeneous Lateral Lithium Intercalation into Transition Metal Dichalcogenides via Ion Backgating. NANO LETTERS 2022; 22:7336-7342. [PMID: 36122383 DOI: 10.1021/acs.nanolett.2c01705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium intercalation has become a versatile tool for realizing emergent quantum phenomena in two-dimensional (2D) materials. However, the insertion of lithium ions may be accompanied by the creation of wrinkles and cracks, which prevents the material from manifesting its intrinsic properties under substantial charge injection. By using the recently developed ion backgating technique, we successfully realize lateral intercalation in 1T-TiSe2 and 2H-NbSe2, which shows substantially improved sample homogeneity. The homogeneity at high lithium doping is not only demonstrated via low-temperature transport measurements but also directly visualized by topographical imaging through in situ atomic force microscopy (AFM). The application of lateral intercalation to a broad spectrum of 2D materials can greatly facilitate the search for exotic quantum phenomena.
Collapse
Affiliation(s)
- Jia-Yi Ji
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Ting Bao
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Heng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yong Xu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center for Quantum Matter, Beijing 100084, China
| | - Ding Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center for Quantum Matter, Beijing 100084, China
| | - Qi-Kun Xue
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center for Quantum Matter, Beijing 100084, China
- Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Ravat P, Uchida H, Sekine R, Kamei K, Yamamoto A, Konovalov O, Tanaka M, Yamada T, Harano K, Nakamura E. De Novo Synthesis of Free-Standing Flexible 2D Intercalated Nanofilm Uniform over Tens of cm 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106465. [PMID: 34651356 DOI: 10.1002/adma.202106465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Of a variety of intercalated materials, 2D intercalated systems have attracted much attention both as materials per se, and as a platform to study atoms and molecules confined among nanometric layers. High-precision fabrication of such structures has, however, been a difficult task using the conventional top-down and bottom-up approaches. The de novo synthesis of a 3-nm-thick nanofilm intercalating a hydrogen-bonded network between two layers of fullerene molecules is reported here. The two-layered film can be further laminated into a multiply film either in situ or by sequential lamination. The 3 nm film forms uniformly over an area of several tens of cm2 at an air/water interface and can be transferred to either flat or perforated substrates. A free-standing film in air prepared by transfer to a gold comb electrode shows proton conductivity up to 1.4 × 10-4 S cm-1 . Electron-dose-dependent reversible bending of a free-standing 6-nm-thick nanofilm hung in a vacuum is observed under electron beam irradiation.
Collapse
Affiliation(s)
- Prince Ravat
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hikaru Uchida
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryosuke Sekine
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Kamei
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, Grenoble, 38043, France
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Teppei Yamada
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|