1
|
Condò I, Giannitelli SM, Lo Presti D, Cortese B, Ursini O. Overview of Dynamic Bond Based Hydrogels for Reversible Adhesion Processes. Gels 2024; 10:442. [PMID: 39057465 PMCID: PMC11275299 DOI: 10.3390/gels10070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Polymeric hydrogels are soft materials with a three-dimensional (3D) hydrophilic network capable of retaining and absorbing large amounts of water or biological fluids. Due to their customizable properties, these materials are extensively studied for developing matrices for 3D cell culture scaffolds, drug delivery systems, and tissue engineering. However, conventional hydrogels still exhibit many drawbacks; thus, significant efforts have been directed towards developing dynamic hydrogels that draw inspiration from organisms' natural self-repair abilities after injury. The self-healing properties of these hydrogels are closely associated with their ability to form, break, and heal dynamic bonds in response to various stimuli. The primary objective of this review is to provide a comprehensive overview of dynamic hydrogels by examining the types of chemical bonds associated with them and the biopolymers utilized, and to elucidate the chemical nature of dynamic bonds that enable the modulation of hydrogels' properties. While dynamic bonds ensure the self-healing behavior of hydrogels, they do not inherently confer adhesive properties. Therefore, we also highlight emerging approaches that enable dynamic hydrogels to acquire adhesive properties.
Collapse
Affiliation(s)
- Ilaria Condò
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
| | - Sara Maria Giannitelli
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Barbara Cortese
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ornella Ursini
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
2
|
Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio 2024; 25:100973. [PMID: 38322663 PMCID: PMC10844750 DOI: 10.1016/j.mtbio.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science, Pohang, 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Inha University Hospital, Incheon, 22332, Republic of Korea
| |
Collapse
|
3
|
Wang J, Sawut A, Simayi R, Song H, Jiao X. Preparation of high strength, self-healing conductive hydrogel based on polysaccharide and its application in sensor. J Mech Behav Biomed Mater 2024; 150:106246. [PMID: 38006795 DOI: 10.1016/j.jmbbm.2023.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
The development of cost-effective, eco-friendly conductive hydrogels with excellent mechanical properties, self-healing capabilities, and non-toxicity holds immense significance in the realm of biosensors. The biosensors demonstrate promising applications in the fields of biomedical engineering and human motion detection. A unique double-network hydrogel was prepared through physical-chemical crosslinking using chitosan (CS), polyacrylic acid (AA), and sodium alginate (SA) as raw materials. The prepared double-network hydrogels exhibited exceptional mechanical properties, as well as self-healing and conductive capabilities. Polyacrylic acid as the first layer network, while chitosan and sodium alginate were incorporated to establish the second layer network through electrostatic interactions, thereby imparting self-healing and self-recovery properties. The hydrogel was subsequently immersed in the salt solution to induce network winding. The mechanical robustness of the hydrogel was significantly enhanced through synergistic coordination of covalent and non-covalent interactions. When the concentration of sodium alginate was 20 g/L, the double-network hydrogel exhibits enhanced mechanical properties, with a tensile fracture stress of up to 1.31 MPa and a strength of 4.17 MPa under 80% compressive deformation. Furthermore, the recovery rate of this double-network hydrogel reached an impressive 89.63% within a span of 30 min. After 24 h without any external forces, the self-healing rate reached 26.11%, demonstrating remarkable capabilities in terms of self-recovery and self-healing. Furthermore, this hydrogel exhibited consistent conductivity properties and was capable of detecting human finger movements. Hence, this study presents a novel approach for designing and synthesizing environmentally friendly conductive hydrogels for biosensors.
Collapse
Affiliation(s)
- Junxiao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Amatjan Sawut
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Rena Simayi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Huijun Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Xueying Jiao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| |
Collapse
|
4
|
Shams Es-haghi S, Weiss RA. Fabrication of Tough Double-Network Hydrogels from Highly Cross-Linked Brittle Neutral Networks Using Alkaline Hydrolysis. Gels 2023; 10:29. [PMID: 38247751 PMCID: PMC10815074 DOI: 10.3390/gels10010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
This paper describes a simple method to synthesize tough hydrogels from a highly cross-linked neutral network. It was found that applying alkaline hydrolysis to a highly cross-linked hydrogel synthesized from acrylamide (AAm) can increase its swelling ratio dramatically. Double-network (DN) hydrogels synthesized from polymerization of loosely cross-linked AAm networks inside a highly cross-linked AAm gel were not tough. However, repeating the same recipes with a second polymerization step to synthesize a DN hydrogel from a hydrolyzed highly cross-linked AAm gel resulted in tough hydrogels. Those gels exhibited finite tensile behavior similar to that of conventional DN hydrogels. Moreover, craze-like patterns were observed during tensile loading of a DN hydrogel synthesized from a hydrolyzed highly cross-linked first network and a loosely cross-linked second network. The patterns remained in the gel even after strain hardening at high stretch ratios. The craze-like pattern formation was suppressed by increasing the concentration of cross-linking monomer in the second polymerization step. Crack propagation in DN hydrogels synthesized using hydrolysis was also studied by applying a tensile load on notched specimens.
Collapse
Affiliation(s)
- S. Shams Es-haghi
- Advanced Structures and Composites Center, The University of Maine, 35 Flagstaff Road, Orono, ME 04469-5793, USA
- Department of Chemical and Biomedical Engineering, The University of Maine, 5737 Jenness Hall, Orono, ME 04469-5737, USA
- Department of Mechanical Engineering, The University of Maine, 75 Long Road, Orono, ME 04469-5744, USA
| | - R. A. Weiss
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 25 King Hill Rd Unit 3136, Storrs, CT 06268-1702, USA
| |
Collapse
|
5
|
Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. NANO-MICRO LETTERS 2023; 15:105. [PMID: 37060483 PMCID: PMC10105367 DOI: 10.1007/s40820-023-01079-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 05/31/2023]
Abstract
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
6
|
Lee G, Seo H, Kim D, Shin S, Kwon K. All polymeric conductive strain sensors with excellent skin adhesion, recovery, and long-term stability prepared from an anion-zwitterion based hydrogel. RSC Adv 2023; 13:1672-1683. [PMID: 36688068 PMCID: PMC9827471 DOI: 10.1039/d2ra07990a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Developing a high-performing hydrogel with long-lasting skin adhesion, high ionic conductivity, mechanical stability, and fatigue resistance is a crucial issue in the field of wearable electronic devices. Because of their weak mechanical properties, zwitterion-based hydrogels are not suitable for application in wearable strain sensors despite their excellent adhesion to the skin. In this study, a hydrogel of polymer without additive was prepared by using polymerizable monomers consisting of zwitterionic 3-(1-vinyl-3-imidazolio)propanesulfonate (VIPS), anionic 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPSs), and acrylamide (AAm); the hydrogel is abbreviated as P(AMPSs/VIPS-co-AAm). The P(AMPSs/VIPS-co-AAm) hydrogel shows exceptional adhesive strength, reaching up to 26.29 kPa (lap shear to porcine skin) and high stretchability (with a fracture strain of 1282% and stress of 40 kPa). The high polarity of the AMPSs/VIPS pair improves the interfacial adhesion to the skin, the internal cohesion and recovery tendency. Unique structural characteristics of the hydrogel impart excellent fatigue resistance, network toughening, and electrical stability after multiple deformations. Thus, the prepared hydrogel has an ionic conductivity (0.51 S m-1), strain sensitivity, and long-term skin adhesion, and it demonstrates potential to be applied for wearable strain sensors.
Collapse
Affiliation(s)
- Goeun Lee
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea,Department of Chemical and Biomolecular Engineering, Yonsei University (YU)Seodaemun-guSeoul03722Republic of Korea
| | - Hyunsu Seo
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea
| | - Daewoo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University (YU)Seodaemun-guSeoul03722Republic of Korea
| | - Seunghan Shin
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea,Department of Green Process and System Engineering, Korea University of Science & Technology (UST)CheonanChungnam 31056Republic of Korea
| | - Kiok Kwon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea
| |
Collapse
|
7
|
Liu Q, Dong H, Guo S, Zhang Y, Wang E, Qu Z, Chen D, Huang L, Hou J, Zheng Y, Wu C. Preparation and properties of a fast‐cross‐linking α‐cyanoacryloyloxyethyloxypropyl‐functionalized polydimethylsiloxane. NANO SELECT 2022. [DOI: 10.1002/nano.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Qingyue Liu
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Key Laboratory of Organosilicon Material Technology Hangzhou Normal University Zhejiang Province Hangzhou Zhejiang People's Republic of China
| | - Hong Dong
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Key Laboratory of Organosilicon Material Technology Hangzhou Normal University Zhejiang Province Hangzhou Zhejiang People's Republic of China
| | - Shiping Guo
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Key Laboratory of Organosilicon Material Technology Hangzhou Normal University Zhejiang Province Hangzhou Zhejiang People's Republic of China
| | - Yipin Zhang
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Key Laboratory of Organosilicon Material Technology Hangzhou Normal University Zhejiang Province Hangzhou Zhejiang People's Republic of China
| | - Erlei Wang
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Key Laboratory of Organosilicon Material Technology Hangzhou Normal University Zhejiang Province Hangzhou Zhejiang People's Republic of China
| | - Zhirong Qu
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Key Laboratory of Organosilicon Material Technology Hangzhou Normal University Zhejiang Province Hangzhou Zhejiang People's Republic of China
| | - Daowei Chen
- Novel Silicone Research Institute Affiliated to Kaihua Synthetic Material Co. Ltd Zhejiang Wynca Chemical Industry Group Co. Ltd Kaihua Zhejiang People's Republic of China
| | - Liangbing Huang
- Novel Silicone Research Institute Affiliated to Kaihua Synthetic Material Co. Ltd Zhejiang Wynca Chemical Industry Group Co. Ltd Kaihua Zhejiang People's Republic of China
| | - Jianchao Hou
- Novel Silicone Research Institute Affiliated to Kaihua Synthetic Material Co. Ltd Zhejiang Wynca Chemical Industry Group Co. Ltd Kaihua Zhejiang People's Republic of China
| | - Yunfeng Zheng
- Novel Silicone Research Institute Affiliated to Kaihua Synthetic Material Co. Ltd Zhejiang Wynca Chemical Industry Group Co. Ltd Kaihua Zhejiang People's Republic of China
| | - Chuan Wu
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Key Laboratory of Organosilicon Material Technology Hangzhou Normal University Zhejiang Province Hangzhou Zhejiang People's Republic of China
| |
Collapse
|
8
|
Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. J Colloid Interface Sci 2022; 622:612-624. [DOI: 10.1016/j.jcis.2022.04.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
9
|
Mondal AK, Xu D, Wu S, Zou Q, Huang F, Ni Y. Design of Fe 3+-Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications. Biomacromolecules 2022; 23:766-778. [PMID: 35049296 DOI: 10.1021/acs.biomac.1c01194] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preparation of natural polymer-based highly conductive hydrogels with tunable mechanical properties for applications in flexible electronics is still challenging. Herein, we report a facile method to prepare lignin-based Fe3+-rich, high-conductivity hydrogels via the following two-step process: (1) lignin hydrogels are prepared by cross-linking sulfonated lignin with poly(ethylene glycol) diglycidyl ether (PEGDGE) and (2) Fe3+ ions are impregnated into the lignin hydrogel by simply soaking in FeCl3. Benefiting from Fe3+ ion complexation with catechol groups and other functional groups in lignin, the resultant hydrogels exhibit unique properties, such as high conductivity (as high as 6.69 S·m-1) and excellent mechanical and hydrophobic properties. As a strain sensor, the as-prepared lignin hydrogel shows high sensitivity when detecting various human motions. With the flow of moist air, the Fe3+-rich lignin hydrogel generates an output voltage of 162.8 mV. The assembled supercapacitor of the hydrogel electrolyte demonstrates a high specific capacitance of 301.8 F·g-1, with a maximum energy density of 26.73 Wh·kg-1, a power density of 2.38 kW·kg-1, and a capacitance retention of 94.1% after 10 000 consecutive charge-discharge cycles. These results support the conclusion that lignin-based Fe3+-rich, high-conductivity hydrogels have promising applications in different fields, including sensors and supercapacitors, rendering a new platform for the value-added utilization of lignin.
Collapse
Affiliation(s)
- Ajoy Kanti Mondal
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.,Institute of Fuel Research and Development, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Dezhong Xu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Shuai Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Qiuxia Zou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Fang Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Yonghao Ni
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.,Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
10
|
Nair ASR, Devi S, Mandal S, Tripathi UK, Roy D, Prasad NE. Insights into enzymatic degradation of physically crosslinked hydrogels anchored by functionalized carbon nanofillers. NEW J CHEM 2022. [DOI: 10.1039/d1nj04924k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immobilization of hydrophobic enzymes on the surface of nanofillers disturbs the non-covalent interactions of polymer–filler networks and destabilizes physically crosslinked hydrogels.
Collapse
Affiliation(s)
- Adwaita SR Nair
- Directorate of Nanomaterials, DMSRDE, Kanpur, 208013, India
- Nanoscience & Technology, Central University of Jharkhand, 835222, India
| | - Sudeepa Devi
- Directorate of Nanomaterials, DMSRDE, Kanpur, 208013, India
- Janta Maha Vidyalaya (CSJM University), Ajitmal, Auraiya, 206121, India
| | - Subhash Mandal
- Directorate of Nanomaterials, DMSRDE, Kanpur, 208013, India
| | | | - Debmalya Roy
- Directorate of Nanomaterials, DMSRDE, Kanpur, 208013, India
| | | |
Collapse
|
11
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Zafar S, Hanif M, Azeem M, Mahmood K, Gondal SA. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Mendonça FG, Menezes IRS, Silva IF, Lago RM. Multifunctional glycerol/citric acid crosslinked polymer hydrophilic gel with absorptive and reducing properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj06138g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multifunctional hydrogel based on glycerol/citric acid presents absorptive and reducing capacities, affording a hybrid gel containing AgNPs in the matrix.
Collapse
Affiliation(s)
- Fernanda G. Mendonça
- Departamento de Química
- ICEx
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | | | - Ingrid F. Silva
- Departamento de Química
- ICEx
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Rochel M. Lago
- Departamento de Química
- ICEx
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| |
Collapse
|
14
|
Pei X, Fang L, Chen W, Wen X, Bai L, Ba X. Facile Fabrication of Multiresponsive Self‐Healing Hydrogels with Logic‐Gate Responses. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaoyue Pei
- College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Liping Fang
- College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Weiping Chen
- College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Xin Wen
- College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Libin Bai
- College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Xinwu Ba
- College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| |
Collapse
|