1
|
Jelínková K, Závodná A, Kaleta J, Janovský P, Zatloukal F, Nečas M, Prucková Z, Dastychová L, Rouchal M, Vícha R. Two Squares in a Barrel: An Axially Disubstituted Conformationally Rigid Aliphatic Binding Motif for Cucurbit[6]uril. J Org Chem 2023; 88:15615-15625. [PMID: 37882436 PMCID: PMC10661032 DOI: 10.1021/acs.joc.3c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Novel binding motifs suitable for the construction of multitopic guest-based molecular devices (e.g., switches, sensors, data storage, and catalysts) are needed in supramolecular chemistry. No rigid, aliphatic binding motif that allows for axial disubstitution has been described for cucurbit[6]uril (CB6) so far. We prepared three model guests combining spiro[3.3]heptane and bicyclo[1.1.1]pentane centerpieces with imidazolium and ammonium termini. We described their binding properties toward CB6/7 and α-/β-CD using NMR, titration calorimetry, mass spectrometry, and single-crystal X-ray diffraction. We found that a bisimidazolio spiro[3.3]heptane guest forms inclusion complexes with CB6, CB7, and β-CD with respective association constants of 4.0 × 104, 1.2 × 1012, and 1.4 × 102. Due to less hindering terminal groups, the diammonio analogue forms more stable complexes with CB6 (K = 1.4 × 106) and CB7 (K = 3.8 × 1012). The bisimidazolio bicyclo[1.1.1]pentane guest forms a highly stable complex only with CB7 with a K value of 1.1 × 1011. The high selectivity of the new binding motifs implies promising potential in the construction of multitopic supramolecular components.
Collapse
Affiliation(s)
- Kristýna Jelínková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Aneta Závodná
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Jiří Kaleta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Petr Janovský
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Filip Zatloukal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Marek Nečas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 602 00, Czech Republic
| | - Zdeňka Prucková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Lenka Dastychová
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Michal Rouchal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Robert Vícha
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| |
Collapse
|
2
|
Park J, Park J, Lee J, Lim C, Lee DW. Size compatibility and concentration dependent supramolecular host-guest interactions at interfaces. Nat Commun 2022; 13:112. [PMID: 35013244 PMCID: PMC8748952 DOI: 10.1038/s41467-021-27659-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
The quantification of supramolecular host-guest interactions is important for finely modulating supramolecular systems. Previously, most host-guest interactions quantified using force spectroscopic techniques have been reported in force units. However, accurately evaluating the adhesion energies of host-guest pairs remains challenging. Herein, using a surface forces apparatus, we directly quantify the interaction energies between cyclodextrin (CD)-modified surfaces and ditopic adamantane (DAd) molecules in water as a function of the DAd concentration and the CD cavity size. The adhesion energy of the β-CD-DAd complex drastically increased with increasing DAd concentration and reached saturation. Moreover, the molecular adhesion energy of a single host-guest inclusion complex was evaluated to be ~9.51 kBT. This approach has potential for quantifying fundamental information toward furthering the understanding of supramolecular chemistry and its applications, such as molecular actuators, underwater adhesives, and biosensors, which require precise tuning of specific host-guest interactions.
Collapse
Affiliation(s)
- Jintae Park
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinwoo Park
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinhoon Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chanoong Lim
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Dong Woog Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
3
|
Kulkarni SG, Jelínková K, Nečas M, Prucková Z, Rouchal M, Dastychová L, Kulhánek P, Vícha R. A Photochemical/Thermal Switch Based on 4,4'-Bis(benzimidazolio)stilbene: Synthesis and Supramolecular Properties. Chemphyschem 2020; 21:2084-2095. [PMID: 32672383 DOI: 10.1002/cphc.202000472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Stilbene derivatives are well-recognised substructures of molecular switches based on photochemically and/or thermally induced (E)/(Z) isomerisation. We combined a stilbene motif with two benzimidazolium arms to prepare new sorts of supramolecular building blocks and examined their binding properties towards cucurbit[n]urils (n=7, 8) and cyclodextrins (β-CD, γ-CD) in water. Based on the 1 H NMR data and molecular dynamics simulations, we found that two distinct complexes with different stoichiometry, i. e., guest@β-CD and guest@β-CD2 , coexist in equilibrium in a water solution of the (Z)-stilbene-based guests. We also demonstrated that the bis(benzimidazolio)stilbene guests can be transformed from the (E) into the (Z) form via UV irradiation and back via thermal treatment in DMSO.
Collapse
Affiliation(s)
- Shantanu Ganesh Kulkarni
- Department of Chemistry, Faculty of Technology, Tomas Bata University Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic
| | - Kristýna Jelínková
- Department of Chemistry, Faculty of Technology, Tomas Bata University Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic
| | - Marek Nečas
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic
| | - Lenka Dastychová
- Department of Chemistry, Faculty of Technology, Tomas Bata University Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic
| |
Collapse
|