1
|
Alcay Y, Ozdemir E, Yildirim MS, Ertugral U, Yavuz O, Aribuga H, Ozkilic Y, Şenyurt Tuzun N, Ozdabak Sert AB, Kok FN, Yilmaz I. A methionine biomolecule-modified chromenylium-cyanine fluorescent probe for the analysis of Hg2+ in the environment and living cells. Talanta 2023; 259:124471. [PMID: 37001401 DOI: 10.1016/j.talanta.2023.124471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The objective of the study is, for the first time, to construct a new near infrared (NIR) fluorophore, spectrophotometric, colorimetric, ratiometric, and turn-on probe (CSME) based on chromenylium cyanine platform decorated with methionine biomolecule to provide an efficient solution for critical shortcoming to be encountered for analysis of hazardous Hg2+ in environment and living cell. The CSME structure and its interaction with Hg2+ ion were evaluated by NMR, FTIR, MS, UV-Vis and fluorescence methods as well as Density Functional Theory (DFT) calculations. The none fluorescence CSME having spirolactam ring only interacted with Hg2+ in aqueous solution including competing ions. This interaction caused the fluorescence CSME with opened spirolactam form which exhibited spectral and colorimetric changes in the NIR region. The probe based on UV-Vis and fluorescence techniques respond in 90 s, has wide linear ranges (for UV-Vis: 6.29 × 10-8 - 1.86 × 10-4 M; for fluorescence: 9.49 × 10-9 - 1.13 × 10-5 M), and has a lower Limit of Detection (LOD) value (for fluorescence: 4.93 × 10-9 M, 0.99 ng/mL) than the value predicted by the US Environmental Protection Agency (EPA) organization. Hg2+ analysis was performed in drinking and tap water with low Relative Standard Deviation (RSD) values and high recovery. Smartphone and living cell applications were successfully performed for colorimetric sensing Hg2+ in real samples and 3T3 cells, respectively.
Collapse
|
2
|
'Lights, squaraines, action!' - the role of squaraine dyes in photodynamic therapy. Future Med Chem 2022; 14:1375-1402. [PMID: 36069190 DOI: 10.4155/fmc-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since they were first synthesized in 1965 by Treibs and Jacob, squaraine dyes have revolutionized the polymethine dyes' 'universe' and their potential applications due to their indisputable physical, chemical and biological properties. After 30 years and up to the present, various research teams have dedicated themselves to studying the squaraines' photodynamic therapy application using in vitro and in vivo models. The various structural modifications made to these compounds, as well as the influence they have shown to have in their phototherapeutic activity, are the main focus of the present review. Finally, the most evident limitations of this class of dyes, as well as future perspectives in the sense of hypothetically successfully overcoming them, are suggested by the authors.
Collapse
|
3
|
Verma A, Modi K, Dey S, Kongor A, Panchal M, Vora M, Panjwani F, Jain VK. Development of tBu-phenyl Acetamide Appended Thiacalix[4]arene as "Turn-ON" Fluorescent Probe for Selective Recognition of Hg(II) Ions. J Fluoresc 2022; 32:637-645. [PMID: 35025015 DOI: 10.1007/s10895-021-02860-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Herein, a novel N-(4-(tert-butyl)-phenyl)-2-chloroacetamide functionalized thiacalix[4]arene architecture, viz TCAN2PA has been synthesized and the sensing behaviour towards metal ions were explored. The probe, TCAN2PA displayed "turn-on" fluorescence response towards Hg(II) ions in acetonitrile over a series of competing common metal ions. A bathochromic shift in absorption band along with a significant "Turn-On" fluorescence behaviour of TCAN2PA was observed upon interaction with Hg(II) ions. The lower rim modification of thiacalixarene with N-(4-(tert-butyl)-phenyl)-2-chloroacetamide actively contributes toward the fluorescence property due to the presence of strong electron-donating aryl amido substituent. Fluorescence titration experiments were conducted to find out the limit of detection and to understand binding stoichiometry as well. The electron transfer interactions between the electron rich TCAN2PA host with Hg(II) ions have been postulated which is also supported by computational modelling insights.
Collapse
Affiliation(s)
- Ashukumar Verma
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Krunal Modi
- Department of Chemistry, Mehsana Urban Institute of Science, Ganpat University, Kherva, Gujarat, 384012, India
| | - Shuvankar Dey
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Manthan Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Manoj Vora
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - V K Jain
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India.
| |
Collapse
|
4
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Influence of a series of pyridine ligands on the structure and photophysical properties of Cd( ii) complexes. CrystEngComm 2022. [DOI: 10.1039/d1ce01584b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Five Cd(ii) complexes based on α-acetamidocinnamic acid (HACA) and a set of N,N^N and N^N^N-pyridine (dPy) yield complexes with diverse nuclearities and enhanced quantum yields, benefiting from the chelation enhanced effect (CHEF) of dPy.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
5
|
Squaraine-Based Optical Sensors: Designer Toolbox for Exploring Ionic and Molecular Recognitions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Small molecule-based chromogenic and fluorogenic probes play an indispensable role in many sensing applications. Ideal optical chemosensors should provide selectivity and sensitivity towards a variety of analytes. Synthetic accessibility and attractive photophysical properties have made squaraine dyes an enticing platform for the development of chemosensors. This review highlights the versatility of modular assemblies of squaraine-based chemosensors and chemodosimeters that take advantage of the availability of various structurally and functionally diverse recognition motifs, as well as utilizing additional recognition capabilities due to the unique structural features of the squaraine ring.
Collapse
|
6
|
An effective fluorescent optical sensor: Thiazolo-thiazole based dye exhibiting anion/cation sensitivities and acidochromism. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Wan H, Xu Q, Gu P, Li H, Chen D, Li N, He J, Lu J. AIE-based fluorescent sensors for low concentration toxic ion detection in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123656. [PMID: 33264865 DOI: 10.1016/j.jhazmat.2020.123656] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 05/25/2023]
Abstract
Ions, including anions and heavy metals, are extremely toxic and easily accumulate in the human body, threatening the health of humans and even causing human death at low concentrations. It is therefore necessary to detect these toxic ions in low concentrations in water. Fluorescent sensing is a good method for detecting these ions, but some conventional dyes often exhibit an aggregation caused quench (ACQ) effect in their solid state, limiting their large-scale application. Fluorescent probes based on aggregation-induced emission (AIE) properties have received significant attention due to their high fluorescence quantum yields in their nano aggragated states, easy fabrication, use of moderate conditions, and selevtive recognization of organic/inorganic compounds in water with obvious changes in fluorescence. We surmarize the recent advances of AIE-based sensors for low concentration toxic ion detection in water. The detection probes can be divided into three categories: chemical reaction types, chemical interaction types and physical interaction types. Chemical reaction types utilize nucleophilic addition and coordination reaction, while chemical interaction types rely on hydrogen bonding and anion-π interactions. The physical interaction types are composed of electrostatic attractions. We finally comment on the challenges and outlook of AIE-active sensors.
Collapse
Affiliation(s)
- Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peiyang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|