Baig N, Shetty S, Bargakshatriya R, Pramanik SK, Alameddine B. Efficient Iodine Uptake of Ultra Thermally Stable Conjugated Copolymers Bearing Biaceanthrylenyl Moieties and Contorted Aromatic Units Using a [3 + 2] Palladium-Catalyzed Cyclopolymerization Reaction.
ACS OMEGA 2023;
8:43227-43235. [PMID:
38024763 PMCID:
PMC10653061 DOI:
10.1021/acsomega.3c07108]
[Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
A novel series of copolymers made from alternating aromatic surrogates with contorted and spiro compounds, denoted as BCP1-3, was successfully synthesized employing a palladium-catalyzed one-pot [3 + 2] cyclopentannulation reaction. The resulting copolymers BCP1-3, which were isolated in high yields, exhibited weight-average molecular weights (Mw) ranging from 11.0 to 61.5 kg mol-1 (kDa) and polydispersity index (Mw/Mn) values in the range of 1.7 and 2.0, which suggest a narrow molecular weight distribution, thus indicating the formation of uniform copolymer chains. Investigation of the thermal properties of BCP1-3 by thermogravimetric analysis disclosed outstanding stability with 10% weight loss temperature values reaching 800 °C. Iodine adsorption tests revealed remarkable results, particularly for BCP2, which demonstrated a strong affinity toward iodine reaching an uptake of 2900 mg g-1. Additionally, recyclability tests showcased the effective regeneration of BCP2 after several successive iodine adsorption-desorption cycles.
Collapse