1
|
Zhang H, Li J, Diao M, Li J, Xie N. Production and pharmaceutical research of minor saponins in Panax notoginseng (Sanqi): Current status and future prospects. PHYTOCHEMISTRY 2024; 223:114099. [PMID: 38641143 DOI: 10.1016/j.phytochem.2024.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Panax notoginseng (Burk.) F.H. Chen is a traditional medicinal herb known as Sanqi or Tianqi in Asia and is commonly used worldwide. It is one of the main raw ingredients of Yunnan Baiyao, Fu fang dan shen di wan, and San qi shang yao pian. It is also a source of cardiotonic pill used to treat cardiovascular diseases in China, Korea, and Russia. Approximately 270 Panax notoginseng saponins have been isolated and identified as the major active components. Although the absorption and bioavailability of saponins are predominantly dependent on the gastrointestinal biotransformation capacity of an individual, minor saponins are better absorbed into the bloodstream and act as active substances than major saponins. Notably, minor saponins are absent or are present in minimal quantities under natural conditions. In this review, we focus on the strategies for the enrichment and production of minor saponins in P. notoginseng using physical, chemical, enzyme catalytic, and microbial methods. Moreover, pharmacological studies on minor saponins derived from P. notoginseng over the last decade are discussed. This review serves as a meaningful resource and guide, offering scholarly references for delving deeper into the exploration of the minor saponins in P. notoginseng.
Collapse
Affiliation(s)
- Hui Zhang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, China; National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| | - Jianxiu Li
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| | - Mengxue Diao
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Nengzhong Xie
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| |
Collapse
|
2
|
Gao Y, Feng Y, Chang Y, Zhu Z, Zhao H, Xu W, Zhao M, Xiao Y, Tian L, Xiu Y. Biotransformation of Ginsenoside Rb1 to Ginsenoside Rd and 7 Rare Ginsenosides Using Irpex lacteus with HPLC-HRMS/MS Identification. ACS OMEGA 2024; 9:22744-22753. [PMID: 38826525 PMCID: PMC11137714 DOI: 10.1021/acsomega.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
The biotransformation of ginsenosides using microorganisms represents a promising and ecofriendly approach for the production of rare ginsenosides. The present study reports on the biotransformation of ginsenoside Rb1 using the fungus Irpex lacteus, resulting in the production of ginsenoside Rd and seven rare ginsenosides with novel structures. Employing high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry, the identities of the transformation products were rapidly determined. Two sets of isomers with molecular weights of 980.56 and 962.55 were discovered among the seven rare ginsenosides, which were generated through the isomerization of the olefin chain in the protopanaxadiol (PPD)-type ginsenoside skeleton. Each isomer exhibited characteristic fragment ions and neutral loss patterns in their tandem mass spectra, providing evidence of their unique structures. Time-course experiments demonstrated that the transformation reaction reached equilibrium after 14 days, with Rb1 initially generating Rd and compound 5, followed by the formation of other rare ginsenosides. The biotransformation process catalyzed by I. lacteus was found to involve not only the typical deglycosylation reaction at the C-20 position but also hydroxylation at the C-22 and C-23 positions, as well as hydrogenation, transfer, and cyclization of the double bond at the C-24(25) position. These enzymatic capabilities extend to the structural modification of other PPD-type ginsenosides such as Rc and Rd, revealing the potential of I. lacteus for the production of a wider range of rare ginsenosides. The transformation activities observed in I. lacteus are unprecedented among fungal biotransformations of ginsenosides. This study highlights the application of a medicinal fungi-based biotransformation strategy for the generation of rare ginsenosides with enhanced structural diversity, thereby expanding the variety of bioactive compounds derived from ginseng.
Collapse
Affiliation(s)
- Yue Gao
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yadong Feng
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yanyan Chang
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Zhu Zhu
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Huanxi Zhao
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Wei Xu
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Mengya Zhao
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yusheng Xiao
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Lu Tian
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yang Xiu
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| |
Collapse
|
3
|
Liang YZ, Guo M, Li YF, Shao LJ, Cui XM, Yang XY. Highly Regioselective Biotransformation of Protopanaxadiol-type and Protopanaxatriol-type Ginsenosides in the Underground Parts of Panax notoginseng to 18 Minor Ginsenosides by Talaromyces flavus. ACS OMEGA 2022; 7:14910-14919. [PMID: 35557696 PMCID: PMC9089366 DOI: 10.1021/acsomega.2c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The transformation of major ginsenosides to minor ginsenosides by microorganisms was considered to be an environmentally friendly method. Compared with GRAS (generally recognized as safe) strains, non-food-grade microorganisms could transform polar ginsenosides to various minor ginsenosides. In this study, Talaromyces flavus screened from the P. notoginseng rhizosphere was capable of transforming PPD-type and PPT-type ginsenosides in the underground parts of P. notoginseng to 18 minor ginsenosides. The transformation reactions invovled deglycosylation, epimerization, and dehydration. To the best of our knowledge, this transformation characteristic of T. flavus was first reported in fungi. Its crude enzyme can efficiently hydrolyze the outer glucose linked to C-20 and C-3 in major ginsenosides Rb1, Rb2, Rb3, Rc, Rd, and 20(S)-Rg3 within 48 h. The transformation of major ginsenosides to minor ginsenosides by T. flavus will help raise the functional and economic value of P. notoginseng.
Collapse
Affiliation(s)
- Ying-Zhong Liang
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming 650032, China
- Yunnan
Provincial Key Laboratory of Panax notoginseng, Kunming 650032, China
| | - Min Guo
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming 650032, China
- Yunnan
Provincial Key Laboratory of Panax notoginseng, Kunming 650032, China
| | - Yin-Fei Li
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming 650032, China
- Yunnan
Provincial Key Laboratory of Panax notoginseng, Kunming 650032, China
| | - Lin-Jiao Shao
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming 650032, China
- Yunnan
Provincial Key Laboratory of Panax notoginseng, Kunming 650032, China
| | - Xiu-Ming Cui
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming 650032, China
- Yunnan
Provincial Key Laboratory of Panax notoginseng, Kunming 650032, China
| | - Xiao-Yan Yang
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming 650032, China
- Yunnan
Provincial Key Laboratory of Panax notoginseng, Kunming 650032, China
| |
Collapse
|
4
|
Liu J, Xin Y, Qiu Z, Zhang Q, He T, Qiu Y, Wang W. Cordyceps sinensis-mediated biotransformation of notoginsenoside R1 into 25-OH-20( S/ R)-R2 with elevated cardioprotective effect against DOX-induced cell injury. RSC Adv 2022; 12:12938-12946. [PMID: 35497008 PMCID: PMC9049007 DOI: 10.1039/d2ra01470j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023] Open
Abstract
Notoginsenoside R1 is a dammarane saponin in Panax notoginseng with promising cardioprotective effects. The bioactivity–structure relationship of such saponins suggested that the presence of a hydroxyl group at C25 could elevate its performance. To fulfill that goal, bioconversion of notoginsenoside R1 was mediated by a biocatalytic system of Cordyceps sinensis that had successfully produced multiple 25-OH derivatives from ginsenoside Re and Rg1. The major metabolic products of notoginsenoside R1 were identified as 25-OH-20(S/R)-R2 via the techniques of HRMS, 13C-NMR, 1H-NMR, HSQC and HMBC. Time-course experiments were designed to monitor the reaction process, establishing a biocatalytic pathway of “R1→20(S/R)-R2→25-OH-20(S/R)-R2”. The bioconversion rate of these 25-OH derivatives added up to 69.87% which greatly precedes the previous report. Afterwards, the effect of these biocatalytic products against doxorubicin-induced cardiotoxicity was evaluated, indicating a significant increase in efficacy after the hydration of the C24–C25 double bond on the dammarane skeleton. In conclusion, the biocatalytic system employed in this paper is able to harvest 25-OH-20(S/R)-R2 in high yield from notoginsenoside R1, which will provide lead compounds or drug candidates to alleviate myocardial injury caused by doxorubicin. The biocatalytic system in this paper preferably yielded 25-OH notoginsenoside R2 from R1 in a regioselective manner. Such a process significantly elevated the effects of these 25-OH derivatives against DOX-induced cardiomyocyte injury.![]()
Collapse
Affiliation(s)
- Jishuang Liu
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Yu Xin
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Zhidong Qiu
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Qi Zhang
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Tianzhu He
- School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Ye Qiu
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Weinan Wang
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|