1
|
Catalytic Reduction of NOx With NH3 Over CeO2 and SiO2 Supported Tungstophosphoric Acid: Promoting Effects of Ceria Support and Cobalt Proton Substitute. Catal Letters 2022. [DOI: 10.1007/s10562-021-03774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
NH3-Selective Catalytic Reduction of NOx to N2 over Ceria Supported WOx Based Catalysts: Influence of Tungsten Content. Catalysts 2021. [DOI: 10.3390/catal11080950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of HPW/CeO2 catalysts generated from 12-tungstophosphoric acid, H3PW12O40 (HPW), supported on ceria and presenting different tungsten loadings (2, 4.5, 9, 16, and 40 wt% W) were prepared and characterized by N2 physisorption, XRD, IR, Raman, and UV-Vis. The different characterization techniques suggested that low loading of tungsten resulted in mainly isolated sites, while high tungsten loading produced polymeric or tungsten clusters. Those materials exhibited high activity in NH3-SCR of NOx into N2. Moreover, the series of experiments indicated that low loading in tungsten (2% HPW/CeO2) displayed the highest activity with a remarkable N2 selectivity (99%) at medium-high temperature (300–515 °C), owing to the high amount of monomeric tungstate coverage on the catalyst surface.
Collapse
|