1
|
Kumar M, Gupta MK, Ansari M, Ansari A. C-H bond activation by high-valent iron/cobalt-oxo complexes: a quantum chemical modeling approach. Phys Chem Chem Phys 2024; 26:4349-4362. [PMID: 38235511 DOI: 10.1039/d3cp05866b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-valent metal-oxo species serve as key intermediates in the activation of inert C-H bonds. Here, we present a comprehensive DFT analysis of the parameters that have been proposed as influencing factors in modeled high-valent metal-oxo mediated C-H activation reactions. Our approach involves utilizing DFT calculations to explore the electronic structures of modeled FeIVO (species 1) and CoIVO ↔ CoIII-O˙ (species 2), scrutinizing their capacity to predict improved catalytic activity. DFT and DLPNO-CCSD(T) calculations predict that the iron-oxo species possesses a triplet as the ground state, while the cobalt-oxo has a doublet as the ground state. Furthermore, we have investigated the mechanistic pathways for the first C-H bond activation, as well as the desaturation of the alkanes. The mechanism was determined to be a two-step process, wherein the first hydrogen atom abstraction (HAA) represents the rate-limiting step, involving the proton-coupled electron transfer (PCET) process. However, we found that the second HAA step is highly exothermic for both species. Our calculations suggest that the iron-oxo species (Fe-O = 1.672 Å) exhibit relatively sluggish behavior compared to the cobalt-oxo species (Co-O = 1.854 Å) in C-H bond activation, attributed to a weak metal-oxygen bond. MO, NBO, and deformation energy analysis reveal the importance of weakening the M-O bond in the cobalt species, thereby reducing the overall barrier to the reaction. This catalyst was found to have a C-H activation barrier relatively smaller than that previously reported in the literature.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Mursaleem Ansari
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| |
Collapse
|
2
|
Monika, Kumar M, Somi, Sarkar A, Gupta MK, Ansari A. Theoretical study of the formation of metal-oxo species of the first transition series with the ligand 14-TMC: driving factors of the "Oxo Wall". Dalton Trans 2023; 52:14160-14169. [PMID: 37750348 DOI: 10.1039/d3dt02109b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Terminal metal-oxo species of the early transition metal series are well known, whereas those for the late transition series are rare, and this is related to the "Oxo Wall". Here, we have undertaken a theoretical study on the formation of metal-oxo species from the metal hydroperoxo species of the 3d series (Cr, Mn, Fe, Co, Ni, and Cu) with the ligand 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) via O⋯O bond cleavage. DFT calculations reveal that the barrier for O⋯O bond cleavage is higher with the late transition metals (Co, Ni, and Cu) than the early transition metals (Cr, Mn, and Fe), and the formed late metal-oxo species are also thermodynamically less stable. The higher barrier may be due to electronic repulsion because of the pairing of d electrons. In the late transition metal series, the electron goes into an antibonding orbital, which decreases the bond order and hence decreases the possibility of metal-oxo formation. Computed structural parameters and spin densities suggest that valence tautomerism occurs in the late transition metal-oxo species which remain as a metal-oxyl. Our findings support the concept of the "Oxo Wall".
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Somi
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Arup Sarkar
- Department of Chemistry, The University of Chicago 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| |
Collapse
|
3
|
Electronic structures and ligand effect on redox potential of iron and cobalt complexes: a computational insight. Struct Chem 2023. [DOI: 10.1007/s11224-022-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
4
|
Kumar M, Ansari M, Ansari A. Electronic, geometrical and photophysical facets of five coordinated porphyrin N-heterocyclic carbene transition metals complexes: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121774. [PMID: 36081194 DOI: 10.1016/j.saa.2022.121774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In the realm of dye sensitized solar cells (DSSCs), the 3d transition metals as photosensitizers are scarcely studied. In the present work, electronic structures, FMO, MEP surfaces, NBO analysis, energetics and photophysical properties of earth abundant metals (Mn, Fe and Co) based metalloporphyrins coordinated with NHC-carbene have been explored by using DFT and TDDFT calculations. According to formation energies and energy decomposition analysis (EDA), the cobalt based metalloporphyrins species are found to be more stable while in contrast manganese based species are predicted as more reactive among all. Also, from the ligation point of view, the TPP (meso-tetraphenylporphyrin) ligand forms more steady and rigid coordination as compare to the TTP (meso-tetratolylporphyrin) ligand. FMO analysis also support these observations. NBO and SNO results support the electronic configurations as well as unveil the controversial bonding pattern of NHCcarbon and metal atom and found that there is σ-bonding present between the metal and the NHCcarbon by the overlapping of sp-hybridized orbitals of carbenecarbon and sp/d hybrid orbital of the metal atom. TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied species is found under the range of 360 nm - 380 nm (λ) and this may due to the presence of longer π-conjugations. In-depth investigation of this work may help to design new robust energy harvesting systems for high energy conversion efficiency based on earth abundance metals. Our results are in well agreement with the available experimental findings.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Mursaleem Ansari
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
5
|
Yadav O, Ansari M, Ansari A. Electronic structures, bonding aspects and spectroscopic parameters of homo/hetero valent bridged dinuclear transition metal complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121331. [PMID: 35597159 DOI: 10.1016/j.saa.2022.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Bridged dinuclear metal complexes have fascinated scientists worldwide, and remarkable success has been achieved to unravel the electronic structures, structure-function relationship, coordination environments, and fine mechanistic details of the enzymes owing to the repercussion of biomimetic studies carried out on dinuclear model systems. Molecular level study of these systems integrated with spectroscopic study helps in gaining deep insights about structural and electronic aspects of natural enzymatic systems. Considering the same, here first time we report DFT study on bridged non-heme metal complexes based on N-Et-HPTB ligand system containing homovalent (MIIMII); {[(MnII)2(O2CCH3)(N-Et-HPTB)]2+; Species I), [(FeII)2(O2CCH3)(N-Et-HPTB)]2+; Species II), [(CoII)2(O2CCH3)(N-Et-HPTB)]2+; Species III)} and heterovalent (MIIIMII): {[(MnIII)(MnII)(O2)(N-Et-HPTB)]2+; Species Ia) [(FeIII)(FeII)(O2)(N-Et-HPTB)]2+; Species IIa) and [(CoIII)(CoII)(O2)(N-Et-HPTB)]2+; Species IIIa)} dinuclear metal centres. Bridging oxygen bears a significant spin density which may prompt important chemical reactions involving activation of bonds like C-H/O-H/N-H etc. TD-DFT calculations for UV-Visible absorption have been carried out to further shed light on structural-functional and electronic structures of these dinuclear species. Studying these dinuclear species may be a good starting point for the study of active sites of the bimetallic centre of dinuclear enzymes and thus may serve as fascinating spectroscopic models. Further, FMO analysis, MEP mapping, and NBO calculations were employed to analyze bonding aspects predict theoretical reactivity behaviour and any kind of stabilizing interactions present in the reported species.
Collapse
Affiliation(s)
- Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Pawai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
6
|
Monika, Ansari A. Electronic structures and energetic of metal(II)-superoxo species: a DFT exploration. Struct Chem 2022. [DOI: 10.1007/s11224-022-02030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Monika, Ansari A. Effect of the ring size of TMC ligands in controlling C-H bond activation by metal-superoxo species. Dalton Trans 2022; 51:5878-5889. [PMID: 35347335 DOI: 10.1039/d2dt00491g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metal-superoxo species play a very important role in many metal-mediated catalytic transformation reactions. Their catalytic reactivity is affected by many factors such as the nature of metal ions and ring size of ligands. Herein, for the first time, we report DFT calculations on the electronic structures of a series of metal-superoxo species (M = V, Cr, Mn, Fe, and Co) with two ring size ligands, i.e., 13-TMC/14-TMC, and a detailed mechanistic study on the C-H bond activation of cyclohexa-1,4-diene followed by the effect of the ring size of ligands. Our DFT results showed that the electron density at the distal oxygen plays an important role in C-H bond activation. By computing the energetics of C-H bond activation and mapping the potential energy surface, it was found that the initial hydrogen abstraction is the rate-determining step with both TMC rings and all the studied metal-superoxo species. The significant electron density at the cyclohex-1,4-diene carbon indicates that the reaction proceeds via the proton-coupled electron transfer mechanism. By mapping the potential energy surfaces, we found that the 13-TMC ligated superoxo with the anti-isomer are more reactive than the 14-TMC superoxo species except for the iron-superoxo species where the 14-TMC ligated superoxo species is more reactive i.e. smaller ring size TMC is more reactive towards C-H bond activation. This is also supported by the structural correlation, i.e., the greater contraction in the smaller ring results in the metal being pushed out of plane along the z-axis, which reduces the steric hindrance. Thus, the ring size can help in designing catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Central University of Haryana, India, 123031.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, India, 123031.
| |
Collapse
|
8
|
Monika, Aman, Ansari A. Theoretical insights for generation of terminal metal-oxo species and involvement of the “oxo wall”. NEW J CHEM 2022. [DOI: 10.1039/d2nj03098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight on the formation of high-valent metal-oxo by the O⋯O bond cleavage of metal hydroperoxo species and our theoretical findings also illustrate the concept “oxo wall”.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry Central University of Haryana, 123031, India
| | - Aman
- Department of Chemistry Central University of Haryana, 123031, India
| | - Azaj Ansari
- Department of Chemistry Central University of Haryana, 123031, India
| |
Collapse
|
9
|
Yadav O, Ansari M, Ansari A. Electronic structures, bonding and energetics of non-heme mono and dinuclear iron-TPA complexes: a computational exploration. Struct Chem 2021. [DOI: 10.1007/s11224-021-01775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Monika, Yadav O, Chauhan H, Ansari A. Electronic structures, bonding, and spin state energetics of biomimetic mononuclear and bridged dinuclear iron complexes: a computational examination. Struct Chem 2021. [DOI: 10.1007/s11224-020-01690-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|