1
|
Mehmood A, Mahmood A, AlMasoud N, Hassan A, Alomar TS, El-Bahy ZM, Raza N, Tian X, Ullah N. Mechanistic Study on Steric Activity Interplay of Olefin/Polar Monomers for Industrially Selective Late Transition Metal Catalytic Reactions. Molecules 2023; 28:7148. [PMID: 37894627 PMCID: PMC10609194 DOI: 10.3390/molecules28207148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
A significant issue in developing metal-catalyzed plastic polymer materials is obtaining distinctive catalytic characteristics to compete with current plastics in industrial commodities. We performed first-principle DFT calculations on the key insertion steps for industrially important monomers, vinyl fluoride (VF) and 3,3,3-trifluoropropene (TFP), to explain how the ligand substitution patterns affect the complex's polymerization behaviors. Our results indicate that the favorable 2,1-insertion of TFP is caused by less deformation in the catalyst moiety of the complexes in contrast to the 1,2-insertion mode. In contrast to the VF monomer, the additional interaction between the fluorine atoms of 3,3,3-trifluoropropene and the carbons of the catalyst ligands also contributed to favor the 2,1-insertion. It was found that the regioselectivity of the monomer was predominated by the progressive alteration of the catalytic geometry caused by small dihedral angles that were developed after the ligand-monomer interaction. Based on the distribution of the 1,2- and 2,1-insertion products, the activity and selectivity were influenced by the steric environment surrounding the palladium center; thus, an increased steric bulk visibly improved the selectivity of the bulkier polar monomer (TFP) during the copolymerization mechanism. In contrast, better activity was maintained through a sterically less hindered Pd metal center; the calculated moderate energy barriers showed that a catalyst with less steric hindrance might provide an opportunity for a wide range of prospective industrial applications.
Collapse
Affiliation(s)
- Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Ayyaz Mahmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Arzoo Hassan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Taghrid S. Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Nadeem Raza
- Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Xiaoqing Tian
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Naeem Ullah
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
2
|
Mehmood A, Mahmood A, Xu X, Raza W, Ahmed S, Ullah N, Luo Y, Tian X. Mechanistic study to reveal steric and electronic aspects involved in the formation of microstructures during Pd-catalyzed olefin/divinyl formal copolymerization: reactivity to catalyst choice. Phys Chem Chem Phys 2023; 25:2439-2450. [PMID: 36598957 DOI: 10.1039/d2cp05117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The advancement of metal-catalyzed copolymers is a formidable challenge for achieving distinct catalytic properties to compete with existing plastic polymers in industrial commodities. Herein, we reveal the roles of electronic and steric environments in the thermodynamic preference of microstructures in ethylene/divinyl formal (DVF) co-polymerization using a Pd catalyst under mild conditions to accommodate the respective industrial applicabilities. The insertion products of DVF result in the alteration of the steric crowding, ultimately favoring the efficient formation of cyclic units having potential applications in the manufacture of high-strength fibers. More specifically, to achieve an improved yield of the end copolymer, we tuned the catalytic activity and regioselectivity through a variety of catalysts during ethylene-DVF co-polymerization. The naphthalene-bridged (P^O)PdMe catalyst was found to be promising in terms of the least hindered (buried volume of 47.8%) environment with the thermodynamic preference of 2,1-insertion with an energy of 5.1 kcal mol-1 among all the Pd-metal based catalysts. The highest activity with moderate energy barriers of the proposed catalyst will open new avenues for achieving a variety of potential applications, which is typically not possible using existing polymerization techniques.
Collapse
Affiliation(s)
- Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518000, Shenzhen, China.
| | - Ayyaz Mahmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518000, Shenzhen, China.
| | - Xiaowei Xu
- PetroChina Petrochemical Research Institute, 102206, Beijing, China.
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Guangdong, 518060, Shenzhen, P. R. China
| | - Shehzad Ahmed
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518000, Shenzhen, China.
| | - Naeem Ullah
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518000, Shenzhen, China.
| | - Yi Luo
- PetroChina Petrochemical Research Institute, 102206, Beijing, China. .,School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Xiaoqing Tian
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518000, Shenzhen, China.
| |
Collapse
|
3
|
Zong K, Chu T, Liu D, Mehmood A, Fan T, Raza W, Hussain A, Deng Y, Liu W, Saad A, Zhao J, Li Y, Aurbach D, Cai X. Bridging 1D Inorganic and Organic Synthesis to Fabricate Ultrathin Bismuth-Based Nanotubes with Controllable Size as Anode Materials for Secondary Li Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204236. [PMID: 35988142 DOI: 10.1002/smll.202204236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The growth of ultrathin 1D inorganic nanomaterials with controlled diameters remains challenging by current synthetic approaches. A polymer chain templated method is developed to synthesize ultrathin Bi2 O2 CO3 nanotubes. This formation of nanotubes is a consequence of registry between the electrostatic absorption of functional groups on polymer template and the growth habit of Bi2 O2 CO3 . The bulk bismuth precursor is broken into nanoparticles and anchored onto the polymer chain periodically. These nanoparticles react with the functional groups and gradually evolve into Bi2 O2 CO3 nanotubes along the chain. 5.0 and 3.0 nm tubes with narrow diameter deviation are synthesized by using branched polyethyleneimine and polyvinylpyrrolidone as the templates, respectively. Such Bi2 O2 CO3 nanotubes show a decent lithium-ion storage capacity of around 600 mA h g-1 at 0.1 A g-1 after 500 cycles, higher than other reported bismuth oxide anode materials. More interestingly, the Bi materials developed herein still show decent capacity at very low temperatures, that is, around 330 mA h g-1 (-22 °C) and 170 mA h g-1 (-35 °C) after 75 cycles at 0.1 A g-1 , demonstrating their promising potential for practical application in extreme conditions.
Collapse
Affiliation(s)
- Kai Zong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianzhi Chu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianju Fan
- Department of Chemistry and BINA, BIU Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Arshad Hussain
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yonggui Deng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ali Saad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Doron Aurbach
- Department of Chemistry and BINA, BIU Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Multivariate Linear Regression Models to Predict Monomer Poisoning Effect in Ethylene/Polar Monomer Copolymerization Catalyzed by Late Transition Metals. INORGANICS 2022. [DOI: 10.3390/inorganics10020026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study combined density functional theory (DFT) calculations and multivariate linear regression (MLR) to analyze the monomer poisoning effect in ethylene/polar monomer copolymerization catalyzed by the Brookhart-type catalysts. The calculation results showed that the poisoning effect of polar monomers with relatively electron-deficient functional groups is weaker, such as ethers, and halogens. On the contrary, polar monomers with electron-rich functional groups (carbonyl, carboxyl, and acyl groups) exert a stronger poisoning effect. In addition, three descriptors that significantly affect the poisoning effect have been proposed on the basis of the multiple linear regression model, viz., the chemical shift of the vinyl carbon atom and heteroatom of polar monomer as well as the metal-X distance in the σ-coordination structure. It is expected that these models could guide the development of efficient catalytic copolymerization system in this field.
Collapse
|
5
|
Mehmood A, Xu X, Raza W, Kukkar D, Kim KH, Luo Y. Computational study of the copolymerization mechanism of ethylene with methyl 2-acetamidoacrylate catalyzed by phosphine-sulfonate palladium complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj02698d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, a computational study is carried out to describe the insertion of a vital monomer, methyl 2-acetamidoacrylate (MAAA), into catalyst A (A = [(POOMe,OMe)PdMe]) (POOMe,OMe = 2[2-MeOC6H4](2-SO3-5-MeC6H4)P).
Collapse
Affiliation(s)
- Andleeb Mehmood
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowei Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Waseem Raza
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Deepak Kukkar
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, Korea
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|