1
|
Jia HL, Li HC, Zhao J, Guan MY. Hyperdispersed ruthenium nanoparticles anchored on S/N co-doped carbon nanotubes as an efficient HER electrocatalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj02869g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hyperdispersed ruthenium nanoparticles anchored on S/N co-doped carbon nanotubes show the same high-performance HER catalytic activity as commercial Pt/C.
Collapse
Affiliation(s)
- Hai-Lang Jia
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Hong-Cheng Li
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Jiao Zhao
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
2
|
Effect of Ultrasonic Excitation on Discharge Performance of a Button Zinc-Air Battery. MICROMACHINES 2021; 12:mi12070792. [PMID: 34357202 PMCID: PMC8303594 DOI: 10.3390/mi12070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
In this paper, a method to increase the output power of a button zinc–air battery by applying acoustofluidics induced by ultrasonic excitation to the battery is proposed and demonstrated. In the structural design of the device, a flat piezoelectric ring was bonded onto the top of the outer surface of the cathode shell to excite an ultrasonic field in the battery. The maximum output power of the zinc–air battery increased by 46.8% when the vibration velocity and working frequency were 52.8 mm/s (the corresponding vibration amplitude was 277 nm) and 161.2 kHz and the rating capacity increased by about 20% with the assistance of the acoustofluidic field induced by ultrasonic excitation. Further analyses indicated that the discharge performance improvement can be attributed to the acoustic microstreaming vortices and the decrease of the viscosity coefficient in the electrolyte solution, which were both caused by ultrasonic excitation of the piezoelectric ring.
Collapse
|
3
|
Gloriozov IP, Dem'yanov PI, Zhulyaev NS, Nechaev MS, Oprunenko YF, Gam F, Saillard JY, Kuznetsov AE. DFT Investigation of the η 6 ⇌ η 6-Inter-ring Haptotropic Rearrangement of the Group 8 Metals Complexes [(graphene)MCp] + (M = Fe, Ru, Os). J Phys Chem A 2021; 125:366-375. [PMID: 33356252 DOI: 10.1021/acs.jpca.0c08251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metalcyclopentadienyl complexes (MCp)+ (M = Fe, Ru, Os) bound to the large polyaromatic hydrogenated hydrocarbon (PAH) C96H24 used as a model for pristine graphene have been studied using a density functional theory (DFT) generalized gradient approximation (PBE functional) to reveal their structural features and dynamic behavior. The inter-ring haptotropic rearrangements (IRHRs) for these complexes were shown to occur via two transition states and one intermediate. The energy barriers of the η6 ⇌ η6 IRHRs of the (MCp)+ unit were found to be 30, 27, and 29 kcal/mol for M = Fe, Ru, and Os, respectively. These values are significantly lower than the values found previously for smaller PAHs. Both polar and nonpolar solvents were found not to affect significantly the energy barrier heights. Investigated transition metal complexes could be used in general as catalysts in the design of novel derivatives or materials with promising properties. Metalcyclopentadienyl complexes (MCp)+ of PAHs show catalytic properties mainly due to their structural details as well as their important characteristic of inter-ring haptotropic rearrangement. IRHRs take place usually by intramolecular mechanisms. During IRHRs, the MLn organometallic groups (OMGs) undergo shifting along the PAH plane and could coordinate additional reagents, which is important for catalysis. Large PAHs such as graphene, fullerenes, and nanotubes possess intrinsic anticancer activity, and numerous arene complexes of Ru and Os have been proven to have anticancer properties as well. We suppose that coordinating Ru or Os to very large PAHs could synergistically increase the anticancer activity of resulting complexes.
Collapse
Affiliation(s)
- Igor P Gloriozov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| | - Piotr I Dem'yanov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| | - Nikolay S Zhulyaev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| | - Mikhail S Nechaev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia.,A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
| | - Yuri F Oprunenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| | - Franck Gam
- ISCR-UMR 6226, Université Rennes, CNRS, F-35000 Rennes, France
| | | | - Aleksey E Kuznetsov
- Department of Chemistry, Universidad Técnica Federico Santa Maria, Av. Santa Maria 6400, Vitacura, 7660251 Santiago, Chile
| |
Collapse
|