1
|
Bai X, Zhu M, Liu Y, Xing M, Ji X, Zhang A, Yang Y, Lu Y, Liu S. Effective oxygen activation on polyoxometalate-based hybrids for epoxidation of alkenes. Dalton Trans 2024; 53:6875-6880. [PMID: 38597267 DOI: 10.1039/d4dt00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Two polyoxometalate-based hybrids, [M(btap)3(H2O)3(HPW12O40)]·xH2O (M-PW, M = Co/Mn, btap = 3,5-bis(1',2',4'-triazol-1'-yl)pyridine) were synthesized. Co-PW exhibited higher activity and selectivity towards olefin epoxidation than Mn-PW due to the synergistic effect between CoII and PW, in which the Co centers activate O2 to ˙O2- and further binding of free H+ from PW affords the active peroxyacid.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Maochun Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yifei Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Min Xing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Xiaoying Ji
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Ange Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yanli Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Guo Y, Liu X, Liu X, Xu N, Wang X. A series of polyoxometalate-based COF composites by one-pot mechanosynthesis of thioether to sulfone. Dalton Trans 2023; 52:12264-12270. [PMID: 37603375 DOI: 10.1039/d3dt02116e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
An effective combination of polyoxometalates (POMs) and porous materials is a feasible method to solve the homogeneity of POMs and synthesize extremely stable POM-based catalysts. Herein, by using simple mechanochemical synthesis, we fabricated a series of composites constructed by Keggin-POMs, p-phenylenediamine (Pa-1), and 1,3,5-triformylphloroglucinol (Tp), which in situ form a stable covalent organic framework (Keggin-POMs@TpPa-1). Notably, the different Keggin-POMs@TpPa-1 composites showed different catalytic effects on thioether oxidation reaction under mild conditions. From the comparison, the catalytic effect of PW12@TpPa-1 with its added amount of 27% H3PW12O40 is superior to that of other composites, whose catalytic efficiency can reach 99%. This study provides some inspiration for designing diverse POM-modified catalysts with outstanding stability and efficiency using COFs as supports.
Collapse
Affiliation(s)
- Yanyan Guo
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiaohui Liu
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiaodong Liu
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Na Xu
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| |
Collapse
|
3
|
Research progress of POMs constructed by 1,3,5-benzene-tricarboxylic acid: From synthesis to application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Maru K, Kalla S, Jangir R. MOF/POM hybrids as catalysts for organic transformations. Dalton Trans 2022; 51:11952-11986. [PMID: 35916617 DOI: 10.1039/d2dt01895k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insertion of molecular metal oxides, e.g. polyoxometalates (POMs), into metal-organic frameworks (MOFs) opens up new research opportunities in various fields, particularly in catalysis. POM/MOF composites have strong acidity, oxygen-rich surface, and redox capacity due to typical characteristics of POMs and the large surface area, highly organized structures, tunable pore size, and shape are due to MOFs. Such hybrid materials have gained a lot of attention due to astonishing structural features, and hence have potential applications in organic catalysis, sorption and separation, proton conduction, magnetism, lithium-ion batteries, supercapacitors, electrochemistry, medicine, bio-fuel, and so on. The exceptional chemical and physical characteristics of POMOFs make them useful as catalysts in simple organic transformations with high capacity and selectivity. Here, the thorough catalytic study starts with a brief introduction related to POMs and MOFs, and is followed by the synthetic strategies and applications of these materials in several catalytic organic transformations. Furthermore, catalytic conversions like oxidation, condensation, esterification, and some other types of catalytic reactions including photocatalytic reactions are discussed in length with their plausible catalytic mechanisms. The disadvantages of the POMOFs and difficulties faced in the field have also been explored briefly from our perspectives.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
5
|
Liu X, Wang X, Xu N, Zhang Z, Li X, Liu G, Wang X. A Multifunctional {P2Mo5}-based Hybrid Applying to Catalysis, Electrocatalysis and Dye Adsorption. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Cui WJ, Zhang SM, Ma YY, Wang Y, Miao RX, Han ZG. Polyoxometalate-Incorporated Metal-Organic Network as a Heterogeneous Catalyst for Selective Oxidation of Aryl Alkenes. Inorg Chem 2022; 61:9421-9432. [PMID: 35700095 DOI: 10.1021/acs.inorgchem.2c00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selective oxidation of aryl alkenes is important for chemical synthesis reactions, in which the key lies in the rational design of efficient catalysts. Herein, four polyoxometalate (POM)-incorporated metal-organic networks, with the formulas of [Co(ttb)(H2O)3]2[SiMo12O40]·2H2O (1), [Co(ttb)(H2O)2]2[SiW12O40]·8H2O (2), [Zn(Httb)(H2ttb)][BW12O40]·9H2O (3) and {[Zn(H2O)3(ttb)]4[Zn3(H2O)6]}[H3SiW10.5Zn1.5O40]2·24H2O (4) (ttb = 1,3,5-tri(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene), were hydrothermally synthesized and structurally characterized. Structural analysis showed that compound 1 consists of a POM-encapsulated three-dimensional (3-D) supramolecular framework; compound 2 is composed of a POM-supported 3-D coordination network; and compounds 3-4 show POM-incorporated 3-D supramolecular networks. Using selective catalytic oxidation of styrene as the model reaction, compounds 1-4 as heterogeneous catalysts display excellent performance with the double advantages of high styrene conversion and benzaldehyde selectivity owing to the synergistic effect among POM anions and transition metal (TM) centers. Among them, compound 1 exhibits the highest performance with ca. 96% styrene conversion and ca. 99% benzaldehyde selectivity in 3 h. In addition, compound 1 also displays excellent substrate compatibility, good reusability, and structural stability. Thus, a plausible reaction pathway for the selective oxidation of styrene is proposed. This study on the structure-function relationship paves a way for the rational design of POM-based heterogeneous catalysts for important catalysis applications.
Collapse
Affiliation(s)
- Wen-Jing Cui
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Si-Meng Zhang
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yue Wang
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Ruo-Xuan Miao
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
7
|
Lu JJ, Liang JJ, Lin HY, Liu QQ, Cui ZW, Wang XL. Four Anderson-type [TeMo 6O 24] 6−-based metal–organic complexes with a new bis(pyrimidine)-bis(amide): multifunctional electrochemical and adsorption performances. CrystEngComm 2022. [DOI: 10.1039/d2ce00504b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Four isostructural Anderson-type POM-based metal–organic complexes derived from a new bis(pyrimidine)-bis(amide) ligand were synthesized, showing multifunctional electrochemical sensing activities and good adsorption performances for organic dyes.
Collapse
Affiliation(s)
- Jun-Jun Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Ju-Ju Liang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hong-Yan Lin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Qian-Qian Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Zi-Wei Cui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
8
|
Wang S, Tong H, Li H, Shi X, Liu D, Li J, Guo K, Zhao L, Song S, Chen L, Cheng W, Wang X. Synthesis of a phosphomolybdic acid/nanocrystalline titanium silicalite-1 catalyst in the presence of hydrogen peroxide for effective adsorption-oxidative desulfurization. NEW J CHEM 2022. [DOI: 10.1039/d1nj04652g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ODS efficiency is in the order thiophene > dibenzothiophene > benzothiophene and may be attributed to the combined effect of HPMo and shape selectivity over Nano-TS-1.
Collapse
Affiliation(s)
- Siyue Wang
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Huan Tong
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Haonan Li
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Xin Shi
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Di Liu
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Jinhong Li
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Kaixuan Guo
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Liu Zhao
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Shengjie Song
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Lidong Chen
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Weiguo Cheng
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiangsheng Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
Sharp CH, Bukowski BC, Li H, Johnson EM, Ilic S, Morris AJ, Gersappe D, Snurr RQ, Morris JR. Nanoconfinement and mass transport in metal-organic frameworks. Chem Soc Rev 2021; 50:11530-11558. [PMID: 34661217 DOI: 10.1039/d1cs00558h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ubiquity of metal-organic frameworks in recent scientific literature underscores their highly versatile nature. MOFs have been developed for use in a wide array of applications, including: sensors, catalysis, separations, drug delivery, and electrochemical processes. Often overlooked in the discussion of MOF-based materials is the mass transport of guest molecules within the pores and channels. Given the wide distribution of pore sizes, linker functionalization, and crystal sizes, molecular diffusion within MOFs can be highly dependent on the MOF-guest system. In this review, we discuss the major factors that govern the mass transport of molecules through MOFs at both the intracrystalline and intercrystalline scale; provide an overview of the experimental and computational methods used to measure guest diffusivity within MOFs; and highlight the relevance of mass transfer in the applications of MOFs in electrochemical systems, separations, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Conor H Sharp
- National Research Council Associateship Program and Electronic Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hongyu Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Stefan Ilic
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Dilip Gersappe
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
10
|
Yang G, Li K, Zeng K, Li Y, Yu T, Liu Y. Heteropolyacid ionic liquid heterogeneously catalyzed synthesis of isochromans via oxa-Pictet-Spengler cyclization in dimethyl carbonate. RSC Adv 2021; 11:10610-10614. [PMID: 35423595 PMCID: PMC8695662 DOI: 10.1039/d1ra01004b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
A recyclable and efficient heterogeneous, green catalyst based on the synthesis of Keggin-type polyoxometalate (H3PMo12O40) and vitamin B1 analogue 3-ethyl-5-(2-hydroxyethyl)-4-methylthiazol-3-ium (HEMT), i.e., [HEMTH]H2[PMo12O40] was prepared. Oxa-Pictet–Spengler cyclization of arylethanols and aldehydes were catalyzed to afford various substituted isochromans in moderate conditions with excellent yields using dimethyl carbonate (DMC) as a green solvent. Furthermore, this protocol was applicable in a gram-scale reaction, and the catalyst could be recycled eight times without significant loss of activity. An efficient heterogeneous and green catalyst [HEMTH]H2[PMo12O40] was prepared to catalysis the oxa-Pictet–Spengler cyclization of arylethanols and aldehydes to afford isochromans with excellent yields using dimethyl carbonate as a green solvent.![]()
Collapse
Affiliation(s)
- Guoping Yang
- East China University of Technology, Jiangxi Province Key Laboratory of Synthetic Chemistry Nanchang 330013 People's Republic of China
| | - Ke Li
- East China University of Technology, Jiangxi Province Key Laboratory of Synthetic Chemistry Nanchang 330013 People's Republic of China
| | - Kai Zeng
- East China University of Technology, Jiangxi Province Key Laboratory of Synthetic Chemistry Nanchang 330013 People's Republic of China
| | - Yijin Li
- East China University of Technology, Jiangxi Province Key Laboratory of Synthetic Chemistry Nanchang 330013 People's Republic of China
| | - Tao Yu
- East China University of Technology, School of Nuclear Science and Engineering Nanchang 330013 China
| | - Yufeng Liu
- East China University of Technology, Jiangxi Province Key Laboratory of Synthetic Chemistry Nanchang 330013 People's Republic of China
| |
Collapse
|
11
|
Ying J, Jin L, Yu HY, Tian AX, Wang XL. A series of polyoxometalate-based hybrid complexes constructed by a tripodal ligand containing mixed N/O donors. CrystEngComm 2021. [DOI: 10.1039/d1ce01195b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We designed two synthetic strategies using identical ligands to construct six POM-based complexes. These complexes can act as amperometric sensors for the detection of Cr(vi), Fe(iii) and H2O2 and fluorescence sensors for sensing Cr3+.
Collapse
Affiliation(s)
- Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hai-Yan Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Ai-Xiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
12
|
Li Z, Shi Y, Liu D, Song S, Zhao L, Guo Y, Chen L, Wang X, Guo X, Cheng W. Synthesis of Ni( ii)-phosphotungstic acid/nanocrystalline HZSM-5 catalyst for ultra clean gasoline in a single-stage reactor. NEW J CHEM 2021. [DOI: 10.1039/d1nj02067f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An excellent catalyst for hydrodesulfurization, aromatization and olefin hydrogenation of FCC gasoline, is designed in this paper.
Collapse
Affiliation(s)
- Zhixin Li
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Yukun Shi
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Di Liu
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Shengjie Song
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Liu Zhao
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Ying Guo
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Lidong Chen
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Xiangsheng Wang
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Xinwen Guo
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Weiguo Cheng
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Key Laboratory of Green Process and Engineering
- Chinese Academy of Sciences
- Institute of Process Engineering
- Chinese Academy of Sciences
| |
Collapse
|
13
|
Abstract
Metal-organic frameworks (MOFs) have been used in adsorption, separation, catalysis, sensing, photo/electro/magnetics, and biomedical fields because of their unique periodic pore structure and excellent properties and have become a hot research topic in recent years. Ball milling is a method of small pollution, short time-consumption, and large-scale synthesis of MOFs. In recent years, many important advances have been made. In this paper, the influencing factors of MOFs synthesized by grinding were reviewed systematically from four aspects: auxiliary additives, metal sources, organic linkers, and reaction specific conditions (such as frequency, reaction time, and mass ratio of ball and raw materials). The prospect for the future development of the synthesis of MOFs by grinding was proposed.
Collapse
|