1
|
Luo L, Li C, Wang Y, Chen P, Zhou Z, Chen T, Wu K, Ding SY, Tan L, Wang J, Shao X, Liu Z. Multi-Functional 2D Covalent Organic Frameworks with Diketopyrrolopyrrole as Electron Acceptor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402993. [PMID: 38750614 DOI: 10.1002/smll.202402993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 10/01/2024]
Abstract
2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds. Both 2D COFs showed good crystallinities and AA stacking with a rhombic framework for DPP-TPP-COF and hexagonal one for DPP-TBB-COF, respectively. The electron D-A and ordered intermolecular packing structures endow the COFs with broad UV-vis absorptions and narrow bandgaps along with suitable HOMO/LUMO energy levels, resulting in multi-functional optoelectronic properties, including photothermal conversion, supercapacitor property, and ambipolar semiconducting behavior. Among them, DPP-TPP-COF exhibits a high photothermal conversion efficiency of 47% under 660 nm laser irradiation, while DPP-TBB-COF exhibits superior specific capacitance of 384 F g-1. Moreover, P-type doping and N-type doping are achieved by iodine and tetrakis(dimethylamino)ethylene on a single host COF, resulting in ambipolar semiconducting behavior. These results provide a paradigm for the application of multi-functional optoelectronic COF materials.
Collapse
Affiliation(s)
- Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhaoqiong Zhou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tianwen Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kunlan Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Ibrahim M, Wen Z, Sun X, Abdelhamid HN. In situ polymerization of a melamine-based microsphere into 3D nickel foam for supercapacitors. RSC Adv 2024; 14:5566-5576. [PMID: 38352687 PMCID: PMC10862101 DOI: 10.1039/d3ra08489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
An in situ synthesis approach is used to directly grow a microsphere of melamine-glutaraldehyde (MAGA) polymer over three-dimensional (3D) nickel foam (NF). The materials are used to produce nitrogen-doped carbon (NC) with and without NF. These precursors undergo carbonization at various temperatures, namely 400 °C, 500 °C, and 700 °C. The electrochemical properties of the materials would be significantly improved by directly growing MAGA polymer on the surface of NF. The electrochemical performance of NC/NF-400 was excellent, with a capacitance of 297 F g-1 achieved at a current density of 1 A g-1. The in situ growing approach does not necessitate the use of additional chemical agents, such as binders or conductive compounds when preparing the electrode. In addition, the material exhibits only 10% reduction in capacitance after undergoing 5000 cycles, indicating excellent cycling performance. The outstanding electrochemical performance achieved by using the in situ method of MAGA microsphere polymer on NF may be attributed to the rapid transit of ions to the electrode surfaces, facilitating effortless redox reactions.
Collapse
Affiliation(s)
- Mervat Ibrahim
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
- Department of Chemistry, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Hani Nasser Abdelhamid
- Department of Chemistry, Assiut University Assiut 71516 Egypt
- Egyptian Russian University Badr City 11829 Egypt
| |
Collapse
|
3
|
Peng H, Huang S, Montes-García V, Pakulski D, Guo H, Richard F, Zhuang X, Samorì P, Ciesielski A. Supramolecular Engineering of Cathode Materials for Aqueous Zinc-ion Energy Storage Devices: Novel Benzothiadiazole Functionalized Two-Dimensional Olefin-Linked COFs. Angew Chem Int Ed Engl 2023; 62:e202216136. [PMID: 36625360 DOI: 10.1002/anie.202216136] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Two-dimensional covalent organic frameworks (COFs) have emerged as promising materials for energy storage applications exhibiting enhanced electrochemical performance. While most of the reported organic cathode materials for zinc-ion batteries use carbonyl groups as electrochemically-active sites, their high hydrophilicity in aqueous electrolytes represents a critical drawback. Herein, we report a novel and structurally robust olefin-linked COF-TMT-BT synthesized via the aldol condensation between 2,4,6-trimethyl-1,3,5-triazine (TMT) and 4,4'-(benzothiadiazole-4,7-diyl)dibenzaldehyde (BT), where benzothiadiazole units are explored as novel electrochemically-active groups. Our COF-TMT-BT exhibits an outstanding Zn2+ storage capability, delivering a state-of-the-art capacity of 283.5 mAh g-1 at 0.1 A g-1 . Computational and experimental analyses reveal that the charge-storage mechanism in COF-TMT-BT electrodes is based on the supramolecularly engineered and reversible Zn2+ coordination by the benzothiadiazole units.
Collapse
Affiliation(s)
- Haijun Peng
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Verónica Montes-García
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Dawid Pakulski
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland.,Adam Mickiewicz University Foundation, Poznań Science and Technology Park, Rubież 46, 61-612, Poznań, Poland
| | - Haipeng Guo
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Fanny Richard
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Paolo Samorì
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur Ciesielski
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000, Strasbourg, France.,Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland.,Adam Mickiewicz University Foundation, Poznań Science and Technology Park, Rubież 46, 61-612, Poznań, Poland
| |
Collapse
|
4
|
Taylor D, Hu X, Wu CM, Tobin JM, Oriou Z, He J, Xu Z, Vilela F. Superprotonic conduction of intrinsically zwitterionic microporous polymers based on easy-to-make squaraine, croconaine and rhodizaine dyes. NANOSCALE ADVANCES 2022; 4:2922-2928. [PMID: 36132008 PMCID: PMC9416968 DOI: 10.1039/d2na00177b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Porous organic polymers (POPs) have been prepared via a novel metal free polycondensation between a tritopic indole-based monomer and squaric, croconic and rhodizonic acids. Each of the three POPs exhibited high BET surface areas (331-667 m2 g-1) and zwitterionic structures. Impedance measurements revealed that the intrinsic POPs were relatively weak proton conductors, with a positive correlation between the density of oxo-groups and the proton conduction. Doping the materials with LiCl vastly improved the proton conductivity up to a value of 0.54 S cm-1 at 90 °C and 90% relative humidity.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Xuanhe Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Can-Min Wu
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - John M Tobin
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Zuzana Oriou
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering 2 Fusionopolis Way, Innovis Building Singapore 138634
| | - Filipe Vilela
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
5
|
Xue R, Zheng YP, Zhang L, Xu DY, Qian DQ, Liu YS, Rao HH, Huang SL, Yang GY. A novel 2D mesoporous phosphazene-anthraquinone-based covalent organic polymer: synthesis, characterization and supercapacitor applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01456k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel phosphazene anthraquinone-based covalent organic polymer (HD-1) was successfully designed and synthesized through a simple polymerization reaction. The as-prepared material was used as an electrode active material for a supercapacitor.
Collapse
Affiliation(s)
- Rui Xue
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Yan-Ping Zheng
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Da-Ying Xu
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - De-Quan Qian
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Yin-Sheng Liu
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Hong-Hong Rao
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|