1
|
Singh TI, Maibam A, Cha DC, Yoo S, Babarao R, Lee SU, Lee S. High-Alkaline Water-Splitting Activity of Mesoporous 3D Heterostructures: An Amorphous-Shell@Crystalline-Core Nano-Assembly of Co-Ni-Phosphate Ultrathin-Nanosheets and V- Doped Cobalt-Nitride Nanowires. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201311. [PMID: 35666047 PMCID: PMC9376825 DOI: 10.1002/advs.202201311] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/04/2022] [Indexed: 05/27/2023]
Abstract
Introducing amorphous and ultrathin nanosheets of transition bimetal phosphate arrays that are highly active in the oxygen evolution reaction (OER) as shells over an electronically modulated crystalline core with low hydrogen absorption energy for an excellent hydrogen evolution reaction (HER) can boost the sluggish kinetics of the OER and HER in alkaline electrolytes. Therefore, in this study, ultrathin and amorphous cobalt-nickel-phosphate (CoNiPOx ) nanosheet arrays are deposited over vanadium (V)-doped cobalt-nitride (V3% -Co4 N) crystalline core nanowires to obtain amorphous-shell@crystalline-core mesoporous 3D-heterostructures (CoNiPOx @V-Co4 N/NF) as bifunctional electrocatalysts. The optimized electrocatalyst shows extremely low HER and OER overpotentials of 53 and 270 mV at 10 mA cm-2 , respectively. The CoNiPOx @V3% -Co4 N/NF (+/-) electrolyzer utilizing the electrocatalyst as both anode and cathode demonstrates remarkable overall water-splitting activity, requiring a cell potential of only 1.52 V at 10 mA cm-2 , 30 mV lower than that of the RuO2 /NF (+)/20%-Pt/C/NF (-) electrolyzer. Such impressive bifunctional activities can be attributed to abundant active sites, adjusted electronic structure, lower charge-transfer resistance, enhanced electrochemically active surface area (ECSA), and surface- and volume-confined electrocatalysis resulting from the synergistic effects of the crystalline V3% -Co4 N core and amorphous CoNiPOx shells boosting water splitting in alkaline media.
Collapse
Affiliation(s)
- Thangjam Ibomcha Singh
- Department of Chemical and Molecular EngineeringHanyang University ERICAAnsan15588Republic of Korea
- Center for Bionano Intelligence Education and ResearchHanyang University ERICAAnsan15588Republic of Korea
| | - Ashakiran Maibam
- School of ScienceRMIT UniversityMelbourneVictoria3001Australia
- Physical and Materials DivisionCSIR‐National Chemical LaboratoryPune411 008India
- Academy of Scientific and Innovative ResearchCSIR‐Human Resource Development Centre (CSIR‐HRDC) CampusPostal Staff College AreaGhaziabadUttar Pradesh201002India
| | - Dun Chan Cha
- Center for Bionano Intelligence Education and ResearchHanyang University ERICAAnsan15588Republic of Korea
- Department of Applied ChemistryHanyang University ERICAAnsan15588Republic of Korea
| | - Sunghoon Yoo
- Department of Chemical and Molecular EngineeringHanyang University ERICAAnsan15588Republic of Korea
- Department of Applied ChemistryHanyang University ERICAAnsan15588Republic of Korea
| | - Ravichandar Babarao
- School of ScienceRMIT UniversityMelbourneVictoria3001Australia
- ManufacturingCSIRONormanby RoadVictoriaClayton3168Australia
| | - Sang Uck Lee
- Department of Chemical and Molecular EngineeringHanyang University ERICAAnsan15588Republic of Korea
- Center for Bionano Intelligence Education and ResearchHanyang University ERICAAnsan15588Republic of Korea
- Department of Applied ChemistryHanyang University ERICAAnsan15588Republic of Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular EngineeringHanyang University ERICAAnsan15588Republic of Korea
- Center for Bionano Intelligence Education and ResearchHanyang University ERICAAnsan15588Republic of Korea
- Department of Applied ChemistryHanyang University ERICAAnsan15588Republic of Korea
| |
Collapse
|
2
|
Jakhar M, Kumar A, Ahluwalia PK, Tankeshwar K, Pandey R. Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2221. [PMID: 35329672 PMCID: PMC8954018 DOI: 10.3390/ma15062221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
Abstract
Splitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve high-yield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties has received much attention in this field. Owing to the recent developments in high-end computation and advanced electronic structure theories, first principles studies offer powerful tools to screen photocatalytic systems reliably and efficiently. This review is organized to highlight the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of 2D materials for the improvement in photocatalytic overall water-splitting. The advancement in the strategies including (i) single-atom catalysts, (ii) defect engineering, (iii) strain engineering, (iv) Janus structures, (v) type-II heterostructures (vi) Z-scheme heterostructures (vii) multilayer configurations (viii) edge-modification in nanoribbons and (ix) the effect of pH in overall water-splitting are summarized to improve the existing problems for a photocatalytic catalytic reaction such as overcoming large overpotential to trigger the water-splitting reactions without using cocatalysts. This review could serve as a bridge between theoretical and experimental research on next-generation 2D photocatalysts.
Collapse
Affiliation(s)
- Mukesh Jakhar
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | | | - Kumar Tankeshwar
- Department of Physics and Astrophysics, Central University of Haryana, Mahendragarh 123031, India;
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
3
|
Zhang W, Enriquez H, Tong Y, Mayne AJ, Bendounan A, Smogunov A, Dappe YJ, Kara A, Dujardin G, Oughaddou H. Flat epitaxial quasi-1D phosphorene chains. Nat Commun 2021; 12:5160. [PMID: 34453043 PMCID: PMC8397792 DOI: 10.1038/s41467-021-25262-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of peculiar phenomena in 1D phosphorene chains (P chains) has been proposed in theoretical studies, notably the Stark and Seebeck effects, room temperature magnetism, and topological phase transitions. Attempts so far to fabricate P chains, using the top-down approach starting from a few layers of bulk black phosphorus, have failed to produce reliably precise control of P chains. We show that molecular beam epitaxy gives a controllable bottom-up approach to grow atomically thin, crystalline 1D flat P chains on a Ag(111) substrate. Scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and density functional theory calculations reveal that the armchair-shaped chains are semiconducting with an intrinsic 1.80 ± 0.20 eV band gap. This could make these P chains an ideal material for opto-electronic devices.
Collapse
Affiliation(s)
- Wei Zhang
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, France
| | - Hanna Enriquez
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, France
| | - Yongfeng Tong
- TEMPO Beamline, Synchrotron SOLEIL, Gif-sur-Yvette, Cedex, France
| | - Andrew J Mayne
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, France
| | | | - Alex Smogunov
- Université Paris-Saclay, CNRS, CEA, Service de Physique de l'Etat Condensé, Gif-sur-Yvette, France
| | - Yannick J Dappe
- Université Paris-Saclay, CNRS, CEA, Service de Physique de l'Etat Condensé, Gif-sur-Yvette, France
| | - Abdelkader Kara
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Gérald Dujardin
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, France
| | - Hamid Oughaddou
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, France.
- Département de Physique, CY Cergy Paris Université, Cergy-Pontoise, Cedex, France.
| |
Collapse
|
4
|
El-Mansy M, Ibrahim M, Suvitha A, Abdelsalam H, Osman W. Boosted electronic, optical, and NLO responses of homo P-nanoclusters via conducting polymeric substituents. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|