1
|
Tang J, Zhang J, Zhang J, Liang Y, Wei J, Ren T, Han X, Ma X. Construction of an Artificial Sequential Light-Harvesting System and White-Light Material Utilizing Supramolecular Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13183-13189. [PMID: 38874200 DOI: 10.1021/acs.langmuir.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The molecular (pyren-1-yloxy)-acetic acid (Py) with excellent fluorescence properties was synthesized from 1-hydroxypyrene (Hp) and formed a supramolecular gel with an acid-base stimulus response in dimethylformamide and water. On the basis of gel, the fluorescent dye perylene 3, 9-dicarbxylic acid, and rhodamine 6g were added successively to construct a step-by-step artificial light-harvesting system, so that the fluorescence color changed from blue-purple to green to red, and white light emission was realized by adjusting the ratio of donors and acceptors.
Collapse
Affiliation(s)
- Jiahong Tang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Jiali Zhang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Juan Zhang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Yuehua Liang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Jiuzhi Wei
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Tianqi Ren
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Xinning Han
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Xinxian Ma
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| |
Collapse
|
2
|
Milkovich SK, Buguis FL, Boyle PD, Gilroy JB. Pnictogen-Rich Heterocycles Derived from a Phosphadiazonium Cation. Chemistry 2024; 30:e202400569. [PMID: 38393539 DOI: 10.1002/chem.202400569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Heterocycles that pair main group elements and nitrogen are extremely important within the π-conjugated heterocycles research community. Compared to the vast number of boron-nitrogen heterocycles, those that include phosphorus are less common. Furthermore, the use of phosphorus-nitrogen triple bonds of any type to prepare such compounds is unprecedented. Here, we pair pyridyl hydrazonide ligands with phosphadiazonium cations and demonstrate that the chelated Mes*NP group is directly implicated in the photophysical and redox properties observed for the resulting heterocycles. In doing so, we introduce a novel building block for the production of phosphorus-containing heterocycles that could find use in small molecule activation and catalysis or as the functional component of emerging organic electronics.
Collapse
Affiliation(s)
- Shaun K Milkovich
- Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Francis L Buguis
- Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Paul D Boyle
- Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| |
Collapse
|
3
|
Ma X, Tang J, Ren T, Zhang J, Wei J, Liang Y, Zhang J, Feng E, Han X. An anti-freeze fluorescent organogel with rapid shape-forming properties for constructing artificial light harvesting systems used in extremely cold environments. SOFT MATTER 2024; 20:754-761. [PMID: 38165722 DOI: 10.1039/d3sm01331f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Using polyvinyl alcohol (PVA) and perylene-3,9-dicarboxylic acid (PDA) as raw materials, a new anti-freeze (-50 °C) fluorescent organogel with rapid shape-forming (2 h) properties was synthesised based on a certain proportion of the binary solvent of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Then, an artificial light-harvesting system (ALHS) used in extremely cold environments was successfully constructed by mixing fluorescent dyes sulphorhodamine101 (SR101) and rhodamine 6G (R6G) into them as acceptors.
Collapse
Affiliation(s)
- Xinxian Ma
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| | - Jiahong Tang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| | - Tianqi Ren
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| | - Jiali Zhang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| | - Jiuzhi Wei
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| | - Yuehua Liang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| | - Juan Zhang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| | - Enke Feng
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| | - Xinning Han
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China.
| |
Collapse
|
4
|
Recent progresses in the mechanistic studies of aggregation-induced emission-active boron complexes and clusters. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Watson AER, Grant MJ, Boyle PD, Ragogna PJ, Gilroy JB. Heterocyclic Phosphenium Cations and Their Divergent Coordination Chemistry. Inorg Chem 2022; 61:18719-18728. [DOI: 10.1021/acs.inorgchem.2c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexander E. R. Watson
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Michael J. Grant
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Paul D. Boyle
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Paul J. Ragogna
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
6
|
Cappello D, Buguis FL, Gilroy JB. Tuning the Properties of Donor-Acceptor and Acceptor-Donor-Acceptor Boron Difluoride Hydrazones via Extended π-Conjugation. ACS OMEGA 2022; 7:32727-32739. [PMID: 36120012 PMCID: PMC9476501 DOI: 10.1021/acsomega.2c04401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular materials with π-conjugated donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) electronic structures have received significant attention due to their usage in organic photovoltaic materials, in organic light-emitting diodes, and as biological imaging agents. Boron-containing molecular materials have been explored as electron-accepting units in compounds with D-A and A-D-A properties as they often exhibit unique and tunable optoelectronic and redox properties. Here, we utilize Stille cross-coupling chemistry to prepare a series of compounds with boron difluoride hydrazones (BODIHYs) as acceptors and benzene, thiophene, or 9,9-dihexylfluorene as donors. BODIHYs with D-A and A-D-A properties exhibited multiple reversible redox waves, solid-state emission with photoluminescence quantum yields up to 10%, and aggregation-induced emission (AIE). Optical band gaps (or highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps) determined for these compounds (2.02-2.25 eV) agree well with those determined from cyclic voltammetry experiments (2.05-2.42 eV). The optoelectronic properties described herein are rationalized with density functional theory calculations that support the interpretation of the experimental findings. This work provides a foundation of understanding that will allow for the consideration of D-A and A-D-A BODIHYs to be incorporated into applications (e.g., organic electronics) where fine-tuning of band gaps is required.
Collapse
|
7
|
Cappello D, Buguis FL, Boyle PD, Gilroy JB. Dual Emission, Aggregation, and Redox Properties of Boron Difluoride Hydrazones Functionalized with Triphenylamines. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Cappello
- The University of Western Ontario Department of Chemistry CANADA
| | | | - Paul D. Boyle
- The University of Western Ontario Department of Chemistry CANADA
| | - Joe B. Gilroy
- The University of Western Ontario Department of Chemistry 1151 Richmond St. N. N6A 5B7 London CANADA
| |
Collapse
|