1
|
Nguyen KC, Lindsey JS. Synthesis of a BC-Dihydrodipyrrin Building Block of Bacteriochlorophyll a. J Org Chem 2023; 88:11205-11216. [PMID: 37471708 DOI: 10.1021/acs.joc.3c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A strategy for the synthesis of bacteriochlorophyll a relies on joining AD and BC halves that contain the requisite stereochemical configurations of the target macrocycle. The BC half (1) is a dihydrodipyrrin bearing a dimethoxymethyl group at the 1-position, a β-ketoester at the 8-position, and (R)-2-methyl and (R)-3-ethyl substituents in the pyrroline ring. An established route to AD-dihydrodipyrrins (Pd-mediated coupling of a 2-halopyrrole with a chiral 4-pentynoic acid followed by Petasis methenylation, acidic hydrolysis, Paal-Knorr ring closure, and Riley oxidation) proved to be unviable for BC-dihydrodipyrrins given the presence of the β-ketoester unit. A route presented here entails Pd-mediated coupling of a 2-halopyrrole (2) with (3R,4R)-4-ethyl-1,1-dimethoxy-3-methylhex-5-yn-2-one (3), anti-Markovnikov hydration of the alkyne to give the 1,4-diketone, and Paal-Knorr ring closure. Compound 3 was prepared by Schreiber-modified Nicholas reaction beginning with (S)-4-isopropyl-3-propionyloxazolidin-2-one and the hexacarbonyldicobalt complex of (±) 3-methoxy-1-(trimethylsilyl)pentyne followed by transformation of the aldehyde derived therefrom to the 1,1-dimethoxymethylcarbonyl motif. The absolute stereochemical configuration of the Schreiber-Nicholas alkylation product was confirmed by single-crystal X-ray diffraction, whereas the BC half (1) by 1H NMR spectroscopy showed a J value of 2.9 Hz consistent with the trans-configuration. Taken together, the route provides a key chiral building block for the synthesis of photosynthetic tetrapyrroles and analogues.
Collapse
Affiliation(s)
- Khiem Chau Nguyen
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jonathan S Lindsey
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Chau Nguyen K, Nguyen Tran AT, Wang P, Zhang S, Wu Z, Taniguchi M, Lindsey JS. Four Routes to 3-(3-Methoxy-1,3-dioxopropyl)pyrrole, a Core Motif of Rings C and E in Photosynthetic Tetrapyrroles. Molecules 2023; 28:molecules28031323. [PMID: 36770988 PMCID: PMC9920783 DOI: 10.3390/molecules28031323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
The photosynthetic tetrapyrroles share a common structural feature comprised of a β-ketoester motif embedded in an exocyclic ring (ring E). As part of a total synthesis program aimed at preparing native structures and analogues, 3-(3-methoxy-1,3-dioxopropyl)pyrrole was sought. The pyrrole is a precursor to analogues of ring C and the external framework of ring E. Four routes were developed. Routes 1-3 entail a Pd-mediated coupling process of a 3-iodopyrrole with potassium methyl malonate, whereas route 4 relies on electrophilic substitution of TIPS-pyrrole with methyl malonyl chloride. Together, the four routes afford considerable latitude. A long-term objective is to gain the capacity to create chlorophylls and bacteriochlorophylls and analogues thereof by facile de novo means for diverse studies across the photosynthetic sciences.
Collapse
|
3
|
de la Concepción JG, Cerdán L, Marcos-Arenal P, Burillo-Villalobos M, Fonseca-Bonilla N, Lizcano-Vaquero R, López-Cayuela MÁ, Caballero JA, Gómez F. Phot0, a plausible primeval pigment on Earth and rocky exoplanets. Phys Chem Chem Phys 2022; 24:16979-16987. [PMID: 35731548 DOI: 10.1039/d2cp01703b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In view of the existing controversy around the origin of the photosynthesis and, therefore, the first photosynthetic pigments, our work focuses on the theoretical study of a hypothetical first pigment, simpler than those existing today, that collects energy from solar radiation on Earth-like exoplanets. Our theoretical results show that there could exist geochemical conditions that allow the abiotic formation of a primeval pigment that might become sufficiently abundant in the early stages of habitable rocky exoplanets. These conditions would place this pigment before the appearance of life in a very young planet, thanks to chemical routes instead of biochemical transformations. Thus, our results may refute the currently accepted hypothesis that the complex biomolecules that allowed the photosynthesis to be carried out were synthesized through complex and evolved metabolic pathways. In addition, we show that the proposed primeval pigment, which we call Phot0, is also a precursor of the more evolved pigments known today on Earth and demonstrate, for the first time, an abiotic chemical route leading to tetrapyrroles not involving pyrrole derivatives. Our proposal places simple and very abundant raw materials in never-before-proposed geochemical conditions that lead to the formation of biomolecules of biological interest.
Collapse
Affiliation(s)
| | - Luis Cerdán
- Instituto de Ciencia Molecular (ICMoL), Universidad de Valencia, 46071 Valencia, Spain
| | - Pablo Marcos-Arenal
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir km. 4, Torrejón de Ardoz, 28850 Madrid, Spain.
| | | | - Nuria Fonseca-Bonilla
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir km. 4, Torrejón de Ardoz, 28850 Madrid, Spain.
| | - Rubén Lizcano-Vaquero
- Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - María-Ángeles López-Cayuela
- Instituto Nacional de Técnica Aeroespacial (INTA), Atmospheric Research and Instrumentation Branch, 28850 Torrejón de Ardoz, Madrid, Spain
| | - José A Caballero
- Centro de Astrobiología (CSIC-INTA), European Space Astronomy Centre, Camino bajo del Castillo, 28691 Villanueva de la Cañada, Madrid, Spain
| | - Felipe Gómez
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir km. 4, Torrejón de Ardoz, 28850 Madrid, Spain.
| |
Collapse
|
4
|
Wang P, Lindsey JS. Synthesis of AD-Dihydrodipyrrins Equipped with Latent Substituents of Native Chlorophylls and Bacteriochlorophylls. J Org Chem 2021; 86:11794-11811. [PMID: 34347485 DOI: 10.1021/acs.joc.1c01239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native chlorophylls and bacteriochlorophylls share a common trans-substituted pyrroline ring D (17-propionic acid, 18-methyl), whereas diversity occurs in ring A particularly at the 3-position. Two dihydrodipyrrins equipped with native-like D-ring substituents and tailorable A-ring substituents have been synthesized. The synthesis relies on a Schreiber-modified Nicholas reaction to construct the stereochemically defined precursor to ring D, a dialkyl-substituted pent-4-ynoic acid. The carboxylic acid group of the intact propionic acid proved unworkable, whereupon protected propionate (-CO2tBu) and several latent propyl ethers were examined. The tert-butyldiphenylsilyl-protected propanol substituent proved satisfactory for reaction of the chiral N-acylated oxazolidinone, affording (2S,3S)-2-(3-((tert-butyldiphenylsilyl)oxy)propyl)-3-methylpent-4-ynoic acid in ∼30% yield over 8 steps. Two variants for ring A, 2-tert-butoxycarbonyl-3-Br/H-5-iodo-4-methylpyrrole, were prepared via the Barton-Zard route. Dihydrodipyrrin formation from the pyrrole and pentynoic acid entailed Jacobi Pd-mediated lactone formation, Petasis methenylation, and Paal-Knorr-type pyrroline formation. The two AD-dihydrodipyrrins bear the D-ring methyl and protected propanol groups with a stereochemical configuration identical to that of native (bacterio)chlorophylls, and a bromine or no substitution in ring A corresponding to the 3-position of (bacterio)chlorophylls. The analogous β-position of a lactone-pyrrole intermediate on the path to the dihydrodipyrrin also was successfully brominated, opening opportunities for late-stage diversification in the synthesis of (bacterio)chlorophylls.
Collapse
Affiliation(s)
- Pengzhi Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
5
|
Chung DTM, Tran PV, Chau Nguyen K, Wang P, Lindsey JS. Synthesis of model bacteriochlorophylls containing substituents of native rings A, C and E. NEW J CHEM 2021. [DOI: 10.1039/d1nj02469h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An established route to the bacteriochlorophyll skeleton from two dihydrodipyrrin halves has been extended to accommodate several substituents characteristic of the native bacteriochlorophyll a.
Collapse
Affiliation(s)
- Duy T. M. Chung
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Phuong Vy Tran
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | - Pengzhi Wang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | |
Collapse
|