1
|
Fujiwara K, Kurose T, Yoshikawa K, Shang R, Kubo K, Kume S, Mizuta T. Improved Syntheses of Doubly Naphthalene-Bridged Diphosphine and its Diiminodiphosphorane Derivatives Linking Two Cu(I) Centers. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
2
|
Cseh K, Geisler H, Stanojkovska K, Westermayr J, Brunmayr P, Wenisch D, Gajic N, Hejl M, Schaier M, Koellensperger G, Jakupec MA, Marquetand P, Kandioller W. Arene Variation of Highly Cytotoxic Tridentate Naphthoquinone-Based Ruthenium(II) Complexes and In-Depth In Vitro Studies. Pharmaceutics 2022; 14:2466. [PMID: 36432656 PMCID: PMC9699003 DOI: 10.3390/pharmaceutics14112466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022] Open
Abstract
The main purpose of this study was to synthesize a new set of naphthoquinone-based ruthenium(II) arene complexes and to develop an understanding of their mode of action. This study systematically reviews the steps of synthesis, aiming to provide a simplified approach using microwave irradiation. The chemical structures and the physicochemical properties of this novel group of compounds were examined by 1H-NMR and 13C-NMR spectroscopy, X-ray diffractometry, HPLC-MS and supporting DFT calculations. Several aspects of the biological activity were investigated in vitro, including short- and long-term cytotoxicity tests, cellular accumulation studies, detection of reactive oxygen species generation, apoptosis induction and NAD(P)H:quinone oxidoreductase 1 (NQO1) activity as well as cell cycle analysis in A549, CH1/PA-1, and SW480 cancer cells. Furthermore, the DNA interaction ability was studied in a cell-free assay. A positive correlation was found between cytotoxicity, lipophilicity and cellular accumulation of the tested complexes, and the results offer some important insights into the effects of the arene. The most obvious finding to emerge from this study is that the usually very chemosensitive CH1/PA-1 teratocarcinoma cells showed resistance to these phthiocol-based organometallics in comparison to the usually less chemosensitive SW480 colon carcinoma cells, which pilot experiments suggest as being related to NQO1 activity.
Collapse
Affiliation(s)
- Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Heiko Geisler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Kristina Stanojkovska
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 17, 1090 Vienna, Austria
| | - Julia Westermayr
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnéstr. 2, 04103 Leipzig, Germany
| | - Philipp Brunmayr
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Dominik Wenisch
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Natalie Gajic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Rúa-Sueiro M, Munín-Cruz P, Fernández A, Ortigueira JM, Pereira MT, Vila JM. Cyclometallated Palladium(II) Complexes: An Approach to the First Dinuclear Bis(iminophosphorane)phosphane-[C,N,S] Metallacycle. Molecules 2022; 27:7043. [PMID: 36296635 PMCID: PMC9607290 DOI: 10.3390/molecules27207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Treatment of bis(iminophosphorane)phosphane ligands 2a-2e with Li2PdCl4 gave a set of novel diphosphane-derived complexes bearing two metallacycle rings, each one enclosing a P=N double bond: the unprecedented bis(iminophosphorane)phosphane-[C,N,S] palladacycles. In the case of the ligand derived from bis(diphenylphosphino)methane, 2a, both the single and the double palladacycle complexes were obtained. Reaction of 3a with bis(diphenylphosphino)ethane did not yield the expected product with the diphosphane bonded to both palladium atoms, but rather the novel coordination compound 5. The crystal structures of 3c and 5 are described.
Collapse
Affiliation(s)
| | | | | | | | | | - José M. Vila
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|