1
|
Thonghlueng J, Ngernpimai S, Chuaephon A, Phanchai W, Wiwasuku T, Wanna Y, Wiratchawa K, Intharah T, Thanan R, Sakonsinsiri C, Puangmali T. Dual-Responsive Carbon Quantum Dots for the Simultaneous Detection of Cytosine and 5-Methylcytosine Interpreted by a Machine Learning-Assisted Smartphone. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40141-40152. [PMID: 37585565 DOI: 10.1021/acsami.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
DNA methylation is an epigenetic alteration that results in 5-methylcytosine (5-mC) through the addition of a methyl group to the fifth carbon of a cytosine (C) residue. The methylation level, the ratio of 5-mC to C, in urine might be related to the whole-body epigenetic status and the occurrence of common cancers. To date, never before have any nanomaterials been developed to simultaneously determine C and 5-mC in urine samples. Herein, a dual-responsive fluorescent sensor for the urinary detection of C and 5-mC has been developed. This assay relied on changes in the optical properties of nitrogen-doped carbon quantum dots (CQDs) prepared by microwave-assisted pyrolysis. In the presence of C, the blue-shifted fluorescence intensity of the CQDs increased. However, fluorescence quenching was observed upon the addition of 5-mC. This was primarily due to photoinduced electron transfer as confirmed by the density functional theory calculation. In urine samples, our sensitive fluorescent sensor had detection limits for C and 5-mC of 43.4 and 74.4 μM, respectively, and achieved satisfactory recoveries ranging from 103.5 to 115.8%. The simultaneous detection of C and 5-mC leads to effective methylation level detection, achieving recoveries in the range of 104.6-109.5%. Besides, a machine learning-enabled smartphone was also developed, which can be effectively applied to the determination of methylation levels (0-100%). These results demonstrate a simple but very effective approach for detecting the methylation level in urine, which could have significant implications for predicting the clinical prognosis.
Collapse
Affiliation(s)
- Janpen Thonghlueng
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawinee Ngernpimai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Adulvit Chuaephon
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theanchai Wiwasuku
- Functional Materials and Nanotechnology Center of Excellence, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yupaporn Wanna
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kannika Wiratchawa
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanapong Intharah
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Morozov B, Oshchepkov AS, Klemt I, Agafontsev AM, Krishna S, Hampel F, Xu HG, Mokhir A, Guldi D, Kataev E. Supramolecular Recognition of Cytidine Phosphate in Nucleotides and RNA Sequences. JACS AU 2023; 3:964-977. [PMID: 37006770 PMCID: PMC10052242 DOI: 10.1021/jacsau.2c00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/19/2023]
Abstract
Supramolecular recognition of nucleotides would enable manipulating crucial biochemical pathways like transcription and translation directly and with high precision. Therefore, it offers great promise in medicinal applications, not least in treating cancer or viral infections. This work presents a universal supramolecular approach to target nucleoside phosphates in nucleotides and RNA. The artificial active site in new receptors simultaneously realizes several binding and sensing mechanisms: encapsulation of a nucleobase via dispersion and hydrogen bonding interactions, recognition of the phosphate residue, and a self-reporting feature-"turn-on" fluorescence. Key to the high selectivity is the conscious separation of phosphate- and nucleobase-binding sites by introducing specific spacers in the receptor structure. We have tuned the spacers to achieve high binding affinity and selectivity for cytidine 5' triphosphate coupled to a record 60-fold fluorescence enhancement. The resulting structures are also the first functional models of poly(rC)-binding protein coordinating specifically to C-rich RNA oligomers, e.g., the 5'-AUCCC(C/U) sequence present in poliovirus type 1 and the human transcriptome. The receptors bind to RNA in human ovarian cells A2780, causing strong cytotoxicity at 800 nM. The performance, self-reporting property, and tunability of our approach open up a promising and unique avenue for sequence-specific RNA binding in cells by using low-molecular-weight artificial receptors.
Collapse
Affiliation(s)
- Boris
S. Morozov
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | | | - Insa Klemt
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Aleksandr M. Agafontsev
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Swathi Krishna
- Department
of Chemistry and Pharmacy, Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Frank Hampel
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Hong-Gui Xu
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Andriy Mokhir
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Dirk Guldi
- Department
of Chemistry and Pharmacy, Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Evgeny Kataev
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| |
Collapse
|
3
|
Fu Y, Si H, Chen J, Zhang W, Feng S, Xiao Z. A Novel “Turn‐On” Fluorescent Sensor for Screening Triplex DNA Binder Based upon Molecular Beacon. ChemistrySelect 2022. [DOI: 10.1002/slct.202203178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanxiang Fu
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Hengdan Si
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Juan Chen
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Wenjuan Zhang
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Shuang Feng
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Zhiyou Xiao
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| |
Collapse
|
4
|
Dual-response fluorescence sensor for detecting Cu2+ and Pd2+ based on bis-tetraphenylimidazole Schiff-base. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Yang Z, Yuan Y, Xu X, Guo H, Yang F. An effective long-wavelength fluorescent sensor for Cu 2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile. Anal Bioanal Chem 2022; 414:4707-4716. [PMID: 35562571 DOI: 10.1007/s00216-022-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
Although numerous fluorescence sensors for Cu2+ have been presented, a long-wavelength sensor in aqueous media has rarely been reported as expected due to practical application requirements. In this work, a novel AIE molecule (DHBB) containing two biphenylacrylonitrile units bridged by dibenzylidenehydrazine was prepared. It possessed the merits of long-wavelength emission, good emission in aqueous media, and multiple functional groups for binding Cu2+. It exhibited good sensing selectivity for Cu2+ among all kinds of tested metal ions. The detection limit was as low as 1.08 × 10-7 M. The sensing mechanism was clarified as 1:1 stoichiometric ratio based on the binding cooperation of O and N functional groups of DHBB. The selective sensing ability for Cu2+ remained stable at pH = 5-9 and was influenced little by other metal ions. The Cu2+ sensing ability of DHBB was applied in real samples with 96% recovery rate. The bio-imaging experiment of living cells suggested that DHBB possessed not only good bio-imaging performance but also sensing ability for Cu2+ in living environments. This work suggested the good application prospect of DHBB to sense Cu2+ in real samples and living environment.
Collapse
Affiliation(s)
- Zengwei Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Yufei Yuan
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China
| | - Xiangfei Xu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China. .,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China. .,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
6
|
Zha B, Fang S, Chen H, Guo H, Yang F. An effective dual sensor for Cu 2+ and Zn 2+ with long-wavelength fluorescence in aqueous media based on biphenylacrylonitrile Schiff-base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120765. [PMID: 34959034 DOI: 10.1016/j.saa.2021.120765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Although some sensors for Cu2+ and Zn2+ had been reported, the sensor with long-wavelength emission in aqueous media for in-situ detecting Cu2+ and Zn2+ was always expected. Herein, a biphenylacrylonitrile Schiff-base (OPBS) with large aromatic conjugated system was designed and synthesized in yield of 82%. OPBS possessed excellent long-wavelength fluorescence at 550-750 nm in aqueous media, which selectively response to sense Cu2+ with quenched fluorescence and Zn2+ with chromotropic fluorescence from red to yellow. The detection of Cu2+ and Zn2+ were realized without mutual interference in their coexistence system by means of the assistance of ATP. The detection limits were 2.3 × 10-7 M for Cu2+ and 1.8 × 10-6 M for Zn2+, respectively. The sensing mechanism was elucidated by binding MS spectra, fluorescence Job's plot and 1H NMR spectra. Moreover, OPBS exhibited good bioimaging performance and the in-situ sensing abilities for Cu2+ and Zn2+ in living cells, suggesting the application potential for detecting Cu2+ and Zn2+ in both vitro assay and vivo environment.
Collapse
Affiliation(s)
- Bowen Zha
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Shuting Fang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Huiling Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
7
|
Kawaguchi K, Moro A, Kojima S, Kubo Y. Chiral recognition coupled with chemometrics using boronate ensembles containing D-π-A cyanostilbenes. Chem Commun (Camb) 2021; 57:12952-12955. [PMID: 34796894 DOI: 10.1039/d1cc05492a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two types of boronic acid-appended D-π-A cyanostilbenes were synthesized to produce chiral boronate ensembles via dehydration with tartaric acid. The aggregation-induced high sensitivity and positional effect of the CN group on the emission properties allowed for chemometrics-coupled chiral recognition.
Collapse
Affiliation(s)
- Kaede Kawaguchi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ayana Moro
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Soya Kojima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|