Helal A, Naeem M, Fettouhi M, Zahir MH. Fluorescein Hydrazide-Appended Metal-Organic Framework as a Chromogenic and Fluorogenic Chemosensor for Mercury Ions.
Molecules 2021;
26:5773. [PMID:
34641317 PMCID:
PMC8510309 DOI:
10.3390/molecules26195773]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we prepared a fluorescein hydrazide-appended Ni(MOF) (Metal-Organic Framework) [Ni3(BTC)2(H2O)3]·(DMF)3(H2O)3 composite, FH@Ni(MOF). This composite was well-characterized by PXRD (powder X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), N2 adsorption isotherm, TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and FESEM (field emission scanning electron microscopy). This composite was then tested with different heavy metals and was found to act as a highly selective and sensitive optical sensor for the Hg2+ ion. It was found that the aqueous emulsion of this composite produces a new peak in absorption at 583 nm, with a chromogenic change to a pink color visible to the naked eye upon binding with Hg2+ ions. In emission, it enhances fluorescence with a fluorogenic change to green fluorescence upon complexation with the Hg2+ ion. The binding constant was found to be 9.4 × 105 M-1, with a detection limit of 0.02 μM or 5 ppb. This sensor was also found to be reversible and could be used for seven consecutive cycles. It was also tested for Hg2+ ion detection in practical water samples from ground water, tap water, and drinking water.
Collapse