1
|
Rawal RS, Mehant A, Suman SK. Deciphering ligninolytic enzymes in the secretome of Pycnoporus sp. and their potential in degradation of 2-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92830-92841. [PMID: 37495802 DOI: 10.1007/s11356-023-28932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Chlorophenols and their derivatives are persistent environmental pollutants, posing a threat to terrestrial and aquatic life. The biological approach for eliminating toxic contaminants is an effective, sustainable, and environmental friendly method. In this study, the crude enzymes present in the secretome of white-rot fungus (Pycnoporus sp.) were explored for the degradation of 2-chlorophenol. The activity of ligninolytic enzymes in the secretome was analyzed and characterized for their kinetics and thermodynamic properties. Laccase and manganese peroxidase were prevalent ligninolytic enzymes and exhibited temperature stability in the range of 50-65 °C and pH 4-5, respectively. The kinetic parameters Michaelis constant (Km) and turnover number (Kcat) for Lac were 42.54 μM and 45 s-1 for 2,2'-azino-bis (3-ethylben- zothiazoline-6-sulfonic acid), and 93.56 μM and 48 s-1 towards 2,6-dimethoxyphenol whereas Km and Kcat for MnP were 2039 μM and 294 s-1 for guaiacol as substrate. Treatment with the crude enzymes laccase and manganese peroxidase results in the reduction of 2-chlorophenol concentration, confirmed by UV-visible absorption spectra and high-performance liquid chromatography analysis. The detoxification of 2-chlorophenol into less toxic forms was confirmed by the plate toxicity assay. This study demonstrated that crude enzymes produced by Pycnoporus sp. could potentially minimize the toxicity of phenolic compounds in a sustainable way.
Collapse
Affiliation(s)
- Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditri Mehant
- Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Naseem S, Rawal RS, Pandey D, Suman SK. Immobilized laccase: an effective biocatalyst for industrial dye degradation from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84898-84917. [PMID: 37369903 DOI: 10.1007/s11356-023-28275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Environmental concerns due to the release of industrial wastewater contaminated with dyes are becoming more and more intense with the increasing industrialization. Decolorization of industrial effluents has become the top priority due to the continuous demand for color-free discharge into the receiving water bodies. Different dye removal techniques have been developed, among which biodegradation by laccase enzyme is competitive. Laccase, as a green catalyst, has a high catalytic activity, generates less toxic by-products, and has been extensively researched in the field of remediation of dyes. However, laccase's significant catalytic activity could only be achieved after an effective immobilization step. Immobilization helps strengthen and stabilize the protein structure of laccase, thus enhancing its functional properties. Additionally, the reusability of immobilized laccase makes it an attractive alternative to traditional dye degradation technologies and in the realistic applications of water treatment, compared with free laccase. This review has elucidated different methods and the carriers used to immobilize laccase. Furthermore, the role of immobilized laccase in dye remediation and the prospects have been discussed.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248005, Uttarakhand, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Patel SKS, Kalia VC, Lee JK. Laccase Immobilization on Copper-Magnetic Nanoparticles for Efficient Bisphenol Degradation. J Microbiol Biotechnol 2023; 33:127-134. [PMID: 36457186 PMCID: PMC9895995 DOI: 10.4014/jmb.2210.10032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022]
Abstract
Laccase activity is influenced by copper (Cu) as an inducer. In this study, laccase was immobilized on Cu and Cu-magnetic (Cu/Fe2O4) nanoparticles (NPs) to improve enzyme stability and potential applications. The Cu/Fe2O4 NPs functionally activated by 3-aminopropyltriethoxysilane and glutaraldehyde exhibited an immobilization yield and relative activity (RA) of 93.1 and 140%, respectively. Under optimized conditions, Cu/Fe2O4 NPs showed high loading of laccase up to 285 mg/g of support and maximum RA of 140% at a pH 5.0 after 24 h of incubation (4°C). Immobilized laccase, as Cu/Fe2O4-laccase, had a higher optimum pH (4.0) and temperature (45°C) than those of a free enzyme. The pH and temperature profiles were significantly improved through immobilization. Cu/Fe2O4-laccase exhibited 25-fold higher thermal stability at 65°C and retained residual activity of 91.8% after 10 cycles of reuse. The degradation of bisphenols was 3.9-fold higher with Cu/Fe2O4-laccase than that with the free enzyme. To the best of our knowledge, Rhus vernicifera laccase immobilization on Cu or Cu/Fe2O4 NPs has not yet been reported. This investigation revealed that laccase immobilization on Cu/Fe2O4 NPs is desirable for efficient enzyme loading and high relative activity, with remarkable bisphenol A degradation potential.
Collapse
Affiliation(s)
- Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin C. Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-3505 Fax: +82-2-458-3504 E-mail:
| |
Collapse
|
4
|
Gou ZC, Lu MJ, Cui XY, Wang XQ, Jiang MY, Wang YS, Wang ZQ, Yu XX, Tang SS, Chen G, Su YJ. Enhanced laccase production by mutagenized Myrothecium verrucaria using corn stover as a carbon source and its potential in the degradation of 2-chlorophen. Bioprocess Biosyst Eng 2022; 45:1581-1593. [PMID: 35932338 DOI: 10.1007/s00449-022-02767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/30/2022] [Indexed: 12/18/2022]
Abstract
Chlorophenols are widely used in industry and are known environmental pollutants. The degradation of chlorophenols is important for environmental remediation. In this study, we evaluated the biodegradation of 2-chlorophenol using crude laccase produced by Myrothecium verrucaria. Atmospheric and room temperature plasma technology was used to increase laccase production. The culture conditions of the M-6 mutant were optimized. Our results showed that corn stover could replace glucose as a carbon source and promote laccase production. The maximum laccase activity of 30.08 U/mL was achieved after optimization, which was a 19.04-fold increase. The biodegradation rate of 2-chlorophenol using crude laccase was 97.13%, a positive correlation was determined between laccase activity and degradation rate. The toxicity of 2-CP was substantially reduced after degradation by laccase solution. Our findings show the feasibility of the use of corn stover in laccase production by M. verrucaria mutant and the subsequent biodegradation of 2-chlorophenol using crude laccase.
Collapse
Affiliation(s)
- Ze-Chang Gou
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Min-Jie Lu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Xiao-Yu Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Xi-Qing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Mei-Yi Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Ya-Shuo Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Zi-Qi Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Xiao-Xiao Yu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Shan-Shan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China
| | - Ying-Jie Su
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China. .,Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, 130118, Jilin, China.
| |
Collapse
|
5
|
Pandey D, Daverey A, Dutta K, Arunachalam K. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar. CHEMOSPHERE 2022; 297:134126. [PMID: 35247449 DOI: 10.1016/j.chemosphere.2022.134126] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, decolorization and degradation of malachite green dye was studied using the laccase immobilized pine needle biochar. Successful immobilization of biochar was achieved by adsorption and confirmed through scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX), Fourier transform infrared spectroscopy (FTIR). High laccase binding of 64.4 U/g and high immobilization yield of 78.1% was achieved using 4U of enzyme at pH3 and temperature 30 °C. The immobilized laccase retained >50% relative activity in the pH range 2-7, >45% relative activity at 65 °C and >55% relative activity at 4 °C for 4 weeks. The re-usability of immobilized enzyme was checked with 2, 2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) substrate and enzyme retained 53% of its activity after 6 cycles. Immobilized laccase was used for the degradation and decolorization of azo dye malachite green in aqueous solution. More than 85% removal of malachite green dye (50 mg/L) was observed within 5 h. FTIR and high performance liquid chromatography (HPLC) analysis clearly indicated the breakdown of dye and presence of metabolites (leuco malachite green, methanone, [4-(dimethyl amino)pheny]phenyl and 3-dimethyl-phenyl amine) in gas chromatography-mass spectrometry (GC-MS) analysis confirmed the dye degradation. Phytotoxicity analysis indicated that the enzymatic degradation resulted in lesser toxic metabolites than the original dye. Thus, laccase immobilized biochar can be used as an efficient biocatalytic agent to remove dye from water.
Collapse
Affiliation(s)
- Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India; School of Biological Sciences, Doon University, Dehradun, Uttarakhand, 248012, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India.
| |
Collapse
|