1
|
Tripathy RR, Singha S, Sarkar S. A review on bio-functional models of catechol oxidase probed by less explored first row transition metals. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2122053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Shuvendu Singha
- Department of Chemistry, SAS, KIIT University, Bhubaneswar, Odisha, India
| | - Sohini Sarkar
- Department of Chemistry, SAS, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Titi A, Touzani R, Moliterni A, Giacobbe C, Baldassarre F, Taleb M, Al-Zaqri N, Zarrouk A, Warad I. Ultrasonic Clusterization Process to Prepare [(NNCO) 6Co 4Cl 2] as a Novel Double-Open-Co 4O 6 Cubane Cluster: SXRD Interactions, DFT, Physicochemical, Thermal Behaviors, and Biomimicking of Catecholase Activity. ACS OMEGA 2022; 7:32949-32958. [PMID: 36157745 PMCID: PMC9494679 DOI: 10.1021/acsomega.1c07032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A novel double-open-cubane (NNCO)6Co4Cl2 cluster with a Co4O6 core was made available under aqua-ultrasonic open atmosphere conditions for the first time. The ultrasonic clusterization of the (3,5-dimethyl-1H-pyrazol-1-yl)methanol (NNCOH) ligand with CoCl2·6H2O salts in ethanol yielded a high-purity and high-yield cluster product. Energy-dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and ultraviolet (UV)-visible techniques were used to elucidate the clusterization process. The double-open-Co4O6 cubane structure of the (NNCO)6Co4Cl2 cluster was solved by synchrotron single-crystal X-ray diffraction (SXRD) and supported by density functional theory (DFT) optimization and thermogravimetric/differential TG (TG/DTG) measurements; moreover, the DFT structural parameters correlated with the ones determined by SXRD. Molecular electrostatic potential (MEP), Mulliken atomic charge/natural population analysis (MAC/NPA), highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of states (DOS), and GRD quantum analyses were computed at the DFT/B3LYP/6-311G(d,p) theory level. The thermal behavior of the cluster was characterized to support the formation of the Co4O6 core as a stable final product. The catalytic property of the (NNCO)6Co4Cl2 cluster was predestined for the oxidation process of 3,5-DTBC diol (3,5-di-tert-butylbenzene-1,2-diol) to 3,5-DTBQ dione (3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione).
Collapse
Affiliation(s)
- Abderrahim Titi
- Laboratory
of Applied and Environmental Chemistry, Mohammed First University, Oujda60000, Morocco
| | - Rachid Touzani
- Laboratory
of Applied and Environmental Chemistry, Mohammed First University, Oujda60000, Morocco
| | - Anna Moliterni
- Institute
of Crystallography, CNR, Via Amendola, 122/O, Bari70126, Italy
| | - Carlotta Giacobbe
- European
Synchrotron Radiation Facility, 71 Avenue Des Martyrs, Grenoble38040, France
| | | | - Mustapha Taleb
- Laboratory
of Engineering, Organometallic, Molecular and Environment (LIMOME),
Faculty of Science, Université Sidi
Mohamed Ben Abdellah, Fez30000, Morocco
| | - Nabil Al-Zaqri
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Abdelkader Zarrouk
- Laboratory
of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, P.O. Box 1014, Agdal-Rabat11000, Morocco
| | - Ismail Warad
- Department
of Chemistry, AN-Najah National University, P.O. Box 7, Nablus P400, Palestine
| |
Collapse
|
3
|
Bashir M, Yousuf I, Prakash Prasad C. Mixed Ni(II) and Co(II) complexes of nalidixic acid drug: Synthesis, characterization, DNA/BSA binding profile and in vitro cytotoxic evaluation against MDA-MB-231 and HepG2 cancer cell lines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120910. [PMID: 35077983 DOI: 10.1016/j.saa.2022.120910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, herein we report the synthesis, structural characterization and in vitro cytotoxic evaluation of two mixed Co(II)/Ni(II)-nalidixic acid-bipyridyl complexes (1 and 2). The structural analysis of metal complexes 1 and 2 was carried out by analytical and multispectroscopic techniques (FT-IR, UV-vis, EPR, sXRD). The crystallographic details of complexes 1 and 2 revealed a monoclinic crystal system with P21/c space group. DFT studies of complexes were performed to get electronic structure and localization of HOMO and LUMO electron densities. Hirshfeld surface analysis of metal complexes 1 and 2 was employed to understand the various intermolecular interactions (C-H···O, N-H···H and O-H···O) that define the stability of crystal lattice structures. The comparative interaction studies of complex 1 and complex 2 with DNA/BSA were performed by diverse multispectroscopic and analytical techniques to evaluate their chemotherapeutic potential. The magnitude of the DNA binding propensity and binding mode was verified by calculating Kb, K and Ksv values. Higher binding affinity was observed in case of complex 2via intercalative mode. Furthermore, the cytotoxic assessment of complexes 1 and 2 was examined against MDA-MB-231 (triple negative human breast cancer cell line) and HepG2 (liver carcinoma cell line) employing MTT assay which revealed remarkably effecient and specific cytotoxic activity of complex 2.
Collapse
Affiliation(s)
- Masrat Bashir
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Imtiyaz Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | | |
Collapse
|
4
|
Coordination of reduced Schiff base anion to Pd(II): Synthesis, characterization, DFT calculation and catecholase activity. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Thio Y, Vittal JJ. Catecholase-like activity in 2D MOFs: Oxidation of 3,5-DTBC by two Cu(II) 2D MOFs of reduced Schiff base ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|