1
|
Yeboah J, Metott ZJ, Butch CM, Hillesheim PC, Mirjafari A. Are nature's strategies the solutions to the rational design of low-melting, lipophilic ionic liquids? Chem Commun (Camb) 2024; 60:3891-3909. [PMID: 38420843 PMCID: PMC10994746 DOI: 10.1039/d3cc06066g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ionic liquids (ILs) have emerged as a new class of materials, displaying a unique capability to self-assemble into micelles, liposomes, liquid crystals, and microemulsions. Despite evident interest, advancements in the controlled formation of amphiphilic ILs remain in the early stages. Taking inspiration from nature, we introduced the concept of lipid-like (or lipid-inspired) ILs more than a decade ago, aiming to create very low-melting, highly lipophilic ILs that are potentially bio-innocuous - a combination of attributes that is frequently antithetical but highly desirable from several application-specific standpoints. Lipid-like ILs are a subclass of functional organic liquid salts that include a range of lipidic side chains such as saturated, unsaturated, linear, branched, and thioether while retaining melting points below room temperature. It was observed in several homologous series of [Cnmim] ILs that elongation of N-appended alkyl chains to greater than seven carbons leads to a substantial increase in melting point (Tm) - which is the most characteristic feature of ILs. Accordingly, it is challenging to develop ILs with low Tm values while preserving their hydrophobicity and self-organizing properties. We found that two alternative Tm depressive approaches are useful. One of these is the replacement of the double bonds with thioether moieties in the alkyl chains, as detailed in several published papers detailing the chemistry of these ILs. Employing thiol-ene and thiol-yne click reactions is a facile, robust, and orthogonal method to overcome the challenges associated with the synthesis of alkyl thioether-functionalized ILs. The second approach involves replacing the double bonds with the cisoid cyclopropyl motif, mimicking the strategy used by certain organisms to modulate cell membrane fluidity. This discovery has the potential to greatly impact the utilization of lipid-like ILs in various applications, including gene delivery, lubricants, heat transfer fluids, and haloalkane separations, among others. This feature article presents a concise, historical overview, highlighting key findings from our work while offering speculation about the future trajectory of this de novo class of soft organic-ion materials.
Collapse
Affiliation(s)
- John Yeboah
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Zachary J Metott
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Christopher M Butch
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida, 34142, USA.
| | - Arsalan Mirjafari
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| |
Collapse
|
2
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
3
|
Adu C, Boucher M, Hillesheim PC, Mirjafari A. Ionic Liquids Containing the Sulfonyl Fluoride Moiety: Integrating Chemical Biology with Materials Design. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2023; 170:066511. [PMID: 38993190 PMCID: PMC11238911 DOI: 10.1149/1945-7111/acdeac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The persistent achievements of ionic liquids in various fields, including medicine and energy necessitate the efficient development of novel functional ionic liquids that exhibit favorable characteristics, alongside the development of practical and scalable synthetic methodologies. Ionic liquids are fundamentally understood as materials in which structure begets function, and the function and applicability of ILs is of utmost concern. It was recently reported that "full fluorosulfonyl" electrolyte is compatible with both the Li metal anode and the metal-oxide cathode that is crucial for the development of high-voltage rechargeable lithium-metal batteries. Inspired by these results, for the first time, we reported the synthesis of a series of ionic liquids with a sulfonyl fluoride motif using an highly effective and modular fluorosulfonylethylation procedure. Herein, we present a detailed analysis of novel sulfonyl fluoride-based ionic liquids paired with the hexafluorophosphate anion. We employed a combination of computational modeling and X-ray crystallographic studies to gain an in-depth understanding of their structure-property correlations.
Collapse
Affiliation(s)
- Clinton Adu
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States of America
| | - Mairead Boucher
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States of America
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States of America
| | - Arsalan Mirjafari
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States of America
| |
Collapse
|
4
|
Bellia S, Teodoro LI, Barbosa AJ, Zeller M, Mirjafari A, Hillesheim PC. Contrasting the Noncovalent Interactions of Aromatic Sulfonyl Fluoride and Sulfonyl Chloride Motifs via Crystallography and Hirshfeld Surfaces. ChemistrySelect 2022; 7:e202203797. [PMID: 36643613 PMCID: PMC9835070 DOI: 10.1002/slct.202203797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
A heteroaryl sulfonyl(VI) fluoride, 4-chloro-7-fluorosulfonyl-2,1,3-benzoxadiazole, was synthesized from its chloride counterpart (4-chloro-7-chlorosulfonyl-2,1,3-benzoxadiazole) and the X-ray structure analysis of these compounds and the interactions in the solid-state were thoroughly examined. Hirshfeld surface analysis is used to provide a thorough and complete picture of the changes arising from the different halides in the functional groups. Surface analysis reveals that the fluoride does not participate in any hydrogen interactions as opposed to the chloride. However, the fluorine atom is observed to form close interactions with several π bonds. For both moieties, however, the sulfonyl oxygens show comparable interactions with respect to both magnitude and interatomic distances. The Hirshfeld surface analysis is coupled with computational studies to help elucidate the observed interactions that are found from the distinct nitrogen, chlorine, and oxygen atoms present in the molecules, providing new physical insights to the correlation between their structures and properties.
Collapse
Affiliation(s)
- Sophia Bellia
- Department of Chemistry and Physics, Ave Maria University, 34142 Ave Maria, FL, USA
| | - Lara I Teodoro
- Department of Chemistry and Physics, Ave Maria University, 34142 Ave Maria, FL, USA
| | - Antonio J Barbosa
- Department of Chemistry and Physics, Ave Maria University, 34142 Ave Maria, FL, USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 47907 West Lafayette, Indiana, USA
| | - Arsalan Mirjafari
- Department of Chemistry, State University of New York at Oswego, 13126 Oswego, New York, USA
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, 34142 Ave Maria, FL, USA
| |
Collapse
|
5
|
Anderson G, Hardy D, Hillesheim PC, Wagle DV, Zeller M, Baker GA, Mirjafari A. Anticancer Agents as Design Archetypes: Insights into the Structure-Property Relationships of Ionic Liquids with a Triarylmethyl Moiety. ACS PHYSICAL CHEMISTRY AU 2022; 3:94-106. [PMID: 36718259 PMCID: PMC9881241 DOI: 10.1021/acsphyschemau.2c00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
A fundamental challenge underlying the design principles of ionic liquids (ILs) entails a lack of understanding into how tailored properties arise from the molecular framework of the constituent ions. Herein, we present detailed analyses of novel functional ILs containing a triarylmethyl (trityl) motif. Combining an empirically driven molecular design, thermophysical analysis, X-ray crystallography, and computational modeling, we achieved an in-depth understanding of structure-property relationships, establishing a coherent correlation with distinct trends between the thermophysical properties and functional diversity of the compound library. We observe a coherent relationship between melting (T m) and glass transition (T g) temperatures and the location and type of chemical modification of the cation. Furthermore, there is an inverse correlation between the simulated dipole moment and the T m/T g of the salts. Specifically, chlorination of the ILs both reduces and reorients the dipole moment, a key property controlling intermolecular interactions, thus allowing for control over T m/T g values. The observed trends are particularly apparent when comparing the phase transitions and dipole moments, allowing for the development of predictive models. Ultimately, trends in structural features and characterized properties align with established studies in physicochemical relationships for ILs, underpinning the formation and stability of these new lipophilic, low-melting salts.
Collapse
Affiliation(s)
- Grace
I. Anderson
- Department
of Chemistry and Physics, Florida Gulf Coast
University, Fort Myers, Florida 33965, United
States
| | - David Hardy
- Department
of Chemistry and Physics, Florida Gulf Coast
University, Fort Myers, Florida 33965, United
States
| | - Patrick C. Hillesheim
- Department
of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States,
| | - Durgesh V. Wagle
- Department
of Chemistry and Physics, Florida Gulf Coast
University, Fort Myers, Florida 33965, United
States,
| | - Matthias Zeller
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Arsalan Mirjafari
- Department
of Chemistry, State University of New York
at Oswego, Oswego, New York 13126, United States,
| |
Collapse
|
6
|
Surface and Void Space Analysis of the Crystal Structures of Two Lithium Bis(pentafluoroethanesulfonyl)imide Salts. CRYSTALS 2022. [DOI: 10.3390/cryst12050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Analysis of two crystal structures of lithium bis(pentafluoroethanesulfonyl)imide is presented. Two orientations of the anion, that is a cis and trans orientation, are observed. Both structures exhibit unique interactions leading to the formation of discrete fluorous domains in the solid-state. A notable difference in the F···F interactions is seen when contrasting the two orientations wherein the trans geometry has a higher percentage of fluorine interactions than the cis orientation. The inclusion of water molecules in one of the structures also leads to the formation of a polar domain formed through a series of cyclical hydrogen bonding rings. The two structures allow for a detailed examination of the bond distances and angles involved in the formation of the two structures. Analysis of the void space in the two structures leads to the observation that the trans conformation exhibits notably higher void space as compared with the cis orientation. Hirshfeld surface analysis is used to help rationalize the interactions leading to unique changes in geometries and structure.
Collapse
|
7
|
Lou TSB, Willis MC. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat Rev Chem 2022; 6:146-162. [PMID: 37117299 DOI: 10.1038/s41570-021-00352-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The advent of sulfur(VI)-fluoride exchange (SuFEx) processes as transformations with click-like reactivity has invigorated research into electrophilic species featuring a sulfur-fluorine bond. Among these, sulfonyl fluorides have emerged as the workhorse functional group, with diverse applications being reported. Sulfonyl fluorides are used as electrophilic warheads by both medicinal chemists and chemical biologists. The balance of reactivity and stability that is so attractive for these applications, particularly the resistance of sulfonyl fluorides to hydrolysis under physiological conditions, has provided opportunities for synthetic chemists. New synthetic approaches that start with sulfur-containing substrates include the activation of sulfonamides using pyrilium salts, the deoxygenation of sulfonic acids, and the electrochemical oxidation of thiols. Employing non-sulfur-containing substrates has led to the development of transition-metal-catalysed processes based on palladium, copper and nickel, as well as the use of SO2F2 gas as an electrophilic hub. Selectively manipulating molecules that already contain a sulfonyl fluoride group has also proved to be a popular tactic, with metal-catalysed processes again at the fore. Finally, coaxing sulfonyl fluorides to engage with nucleophiles, when required, and under suitable reaction conditions, has led to new activation methods. This Review provides an overview of the challenges in the efficient synthesis and manipulation of these intriguing functional groups.
Collapse
|
8
|
Bellia SA, Teodoro LI, Traver J, Guillet GL, Zeller M, Hillesheim PC. Structural, surface, and computational analysis of two vitamin-B1 crystals with sulfonimide-based anions. Z KRIST-CRYST MATER 2021. [DOI: 10.1515/zkri-2021-2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two crystals incorporating the thiamine·HCl cation and the fluorinated anion 1,3-disulfonylhexafluoropropyleneimide have been characterized via single-crystal X-ray diffraction. The host-guest interactions of thiamine with the anions are analyzed and characterized using Hirshfeld surface analysis. The cations in both structures form a dimer in the solid-state via reciprocal hydrogen bonding through the amine and hydroxyl moieties. Additional investigation into the interactions responsible for dimer formation found that the sulfur atom in the thiazolium ring interacting with several hydrogen atoms to form stabilizing interactions. These interactions in the dimer are further analyzed using reduced density gradient analysis and the results are correlated to the fingerprint plots derived from the Hirshfeld surfaces. Moreover, specific interactions are observed from the cyclical anions, with both the fluorine and sulfonyl oxygen atoms participating in bridging interactions, displaying the diverse host-guest properties of thiamine.
Collapse
Affiliation(s)
- Sophia A. Bellia
- Department of Chemistry and Physics , Ave Maria University , Ave Maria , FL 34142 , USA
| | - Lara I. Teodoro
- Department of Chemistry and Physics , Ave Maria University , Ave Maria , FL 34142 , USA
| | - Joseph Traver
- Department of Chemistry and Physics , Ave Maria University , Ave Maria , FL 34142 , USA
| | - Gary L. Guillet
- Department of Chemistry and Biochemistry , Georgia Southern University , Savannah , GA 31419 , USA
| | - Matthias Zeller
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA
| | - Patrick C. Hillesheim
- Department of Chemistry and Physics , Ave Maria University , Ave Maria , FL 34142 , USA
- Department of Chemistry and Physics , Florida Gulf Coast University , Fort Myers , FL 33965 , USA
| |
Collapse
|
9
|
Directing cation-cation interactions in thiamine compounds: Analysis of a series of organic salts based on vitamin B1. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|