1
|
Kundu G, Pramanik D, Dash SR, Kumar R, Sangole M, Tothadi S, Ghosh A, Vanka K, Singh K, Sen SS. Unprecedented C-F bond cleavage in perfluoronaphthalene during cobaltocene reduction. Dalton Trans 2024; 53:17789-17793. [PMID: 39498541 DOI: 10.1039/d4dt02791d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The C-F bond activation of perfluoronaphthalene by 5-SIDipp led to the formation of dicationic salts with two fluorides (3·2HF2 ) or heptafluorodiborate (3·2B2F7) as counter-anions. The anion exchange reaction of 3·2B2F7 with NBu4PF6 afforded a highly luminescent 3·2PF6. The in situ addition of cobaltocene in the reaction mixture of 5-SIDipp and perfluoronaphthalene led to a distinct Co(I) species.
Collapse
Affiliation(s)
- Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debjit Pramanik
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumya Ranjan Dash
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Ravi Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Mayur Sangole
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Srinu Tothadi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, India
| | - Aryya Ghosh
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Kirandeep Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
3
|
Horrer G, Luff MS, Radius U. N-Heterocyclic carbene and cyclic (alkyl)(amino)carbene ligated half-sandwich complexes of chromium(II) and chromium(I). Dalton Trans 2023; 52:13244-13257. [PMID: 37667868 DOI: 10.1039/d3dt02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The synthesis and characterization of a series of Cr(II) N-Heterocyclic Carbene (NHC) complexes of the type [{Cr(NHC)Cl(μ-Cl)}2] and [(Cyp)Cr(NHC)X] (Cyp = η5-C5H5, cyclopentadienyl; η5-C5Me5, pentamethylcyclopentadienyl; X = Cl, η3-C3H5; NHC = IMeMe, IiPrMe, IMes, IDipp) as well as the cyclic (alkyl)(amino)carbene cAACMe ligated complexes [(η5-C5H5)Cr(cAACMe)X] (X = Cl, NPh2), [(η5-C9H7)Cr(cAACMe)Cl] (C9H7 = Ind, indenyl) and [(η5-C13H9)Cr(cAACMe)Cl] (C13H9 = Fl, fluorenyl) are reported. The reduction of [(η5-C5Me5)Cr(IMeMe)Cl] with KC8 in the presence of CO afforded the NHC ligated Cr(I) metallo-radical [(η5-C5Me5)Cr(IMeMe)(CO)2]. Quantum chemical calculations performed on [(η5-C5Me5)Cr(IMeMe)(CO)2] confirm for this complex a predominantly chromium centered radical.
Collapse
Affiliation(s)
- Günther Horrer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Martin S Luff
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
4
|
Budagumpi S, Keri RS, Nagaraju D, Yhobu Z, Monica V, Geetha B, Kadu RD, Neole N. Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|