1
|
Ness M, Peramuna T, Wendt KL, Collins JE, King JB, Paes R, Santos NM, Okeke C, Miller CR, Chakrabarti D, Cichewicz RH, McCall LI. Rationally Minimizing Natural Product Libraries Using Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595232. [PMID: 38826280 PMCID: PMC11142144 DOI: 10.1101/2024.05.22.595232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural product libraries are crucial to drug development, but large libraries drastically increase the time and cost during initial high throughput screens. Here, we developed a method that leverages liquid chromatography-tandem mass spectrometry spectral similarity to dramatically reduce library size, with minimal bioactive loss. This method offers a broadly applicable strategy for accelerated drug discovery with cost reductions, which enable implementation in resource-limited settings.
Collapse
Affiliation(s)
- Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, 92182, United States
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L. Wendt
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jennifer E. Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32826, United States
| | - Jarrod B. King
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Raphaella Paes
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32826, United States
| | - Natalia Mojica Santos
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32826, United States
| | - Crystal Okeke
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Cameron R. Miller
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32826, United States
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, 92182, United States
| |
Collapse
|
2
|
Tang J, Su L, He X, Liu D, Zhao C, Zhang S, Li Q, Li R, Li H. Biotransformation of Patchouli Alcohol by Cladosporium cladosporioides and the Anti-Influenza Virus Activities of Biotransformation Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7991-8005. [PMID: 38544458 DOI: 10.1021/acs.jafc.3c09753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The biotransformation of patchouli alcohol by Cladosporium cladosporioides afforded 31 products, including 21 new ones (1-3, 5, 6, 8-14, and 17-25). Their structures were determined by extensive spectroscopic data analysis (1H and 13C NMR, HSQC, HMBC, 1H-1H COSY, ROESY, and HRESIMS), and the absolute configuration of compounds 1, 2, 8, 9, and 17 was determined by single-crystal X-ray diffraction using Cu Kα radiation. Structurally, compounds 21-24 were patchoulol-type norsesquiterpenoids without Me-12. Among them, a Δ3(4) double bond existed in compounds 21 and 22; a three-membered ring was formed between C-4, C-5, and C-6 in compound 23; an epoxy moiety appeared between C-3 and C-4 in compound 24. Furthermore, the biotransformation products 9, 10, 12, and 25 showed potent anti-influenza virus activity with EC50 values of 2.11, 7.94, 20.87, and 3.45 μM, respectively.
Collapse
Affiliation(s)
- Jianxian Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Lu Su
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Xiu He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Dan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Chunyan Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Shixian Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Qin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, P.R. China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Hongmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| |
Collapse
|
3
|
Luo X, Chen X, Zhang L, Liu B, Xie L, Ma Y, Zhang M, Jin X. Chemical Constituents and Biological Activities of Bruguiera Genus and Its Endophytes: A Review. Mar Drugs 2024; 22:158. [PMID: 38667775 PMCID: PMC11050931 DOI: 10.3390/md22040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The genus Bruguiera, a member of the Rhizophoraceae family, is predominantly found in coastal areas as a mangrove plant, boasting a rich and diverse community of endophytes. This review systematically compiled approximately 496 compounds derived from both the Bruguiera genus and its associated endophytes, including 152 terpenoids, 17 steroids, 16 sulfides, 44 alkaloids and peptides, 66 quinones, 68 polyketides, 19 flavonoids, 38 phenylpropanoids, 54 aromatic compounds, and 22 other compounds. Among these, 201 compounds exhibited a spectrum of activities, including cytotoxicity, antimicrobial, antioxidant, anti-inflammatory, antiviral, antidiabetic, insecticidal and mosquito repellent, and enzyme inhibitory properties, etc. These findings provided promising lead compounds for drug discovery. Certain similar or identical compounds were found to be simultaneously present in both Bruguiera plants and their endophytes, and the phenomenon of their interaction relationship was discussed.
Collapse
Affiliation(s)
- Xiongming Luo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
| | - Xiaohong Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
| | - Lingli Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
| | - Bin Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
| | - Lian Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
| | - Yan Ma
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Min Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Chang S, Luo Y, Wang M, He N, Chen M, Huang X, Wang J, Yuan L, Xie Y. Pairing comparative genomics with tandem mass-based molecular networking allows to highly efficient discovery of nonribosomal peptides from Nocardia spp. J Chromatogr A 2023; 1708:464343. [PMID: 37717450 DOI: 10.1016/j.chroma.2023.464343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Microbial natural products, particularly nonribosomal peptides (NRPs), have attracted significant attention due to their structural diversity and therapeutic potential. Nocardia, a genus of Actinomyces, is an important reservoir for natural products, especially NRPs. However, rediscovery is a significant challenge for mining new specialized metabolites from Nocardia, as well as from other sources. To overcome this challenge, we developed a strategy that combines comparative genomics with tandem mass-based molecular networking, which allows to efficiently discover new NRPs from Nocardia spp.. As a proof of concept, all genomes of Norcardia in NCBI database, including three strains from our lab, were compared with each other to prioritize unique biosynthetic gene clusters (BGCs) in the three in-house Nocardia strains, particularly those containing nonribosomal peptide synthases (NRPSs). Subsequently, the metabolomics data of those three in-house strains were analyzed employing tandem mass-based molecular networking. This led to the identification of a known lipopeptide, nocarjamide (1), and five new congeners (2-6) of nocarjamide, as well as a new decalipopeptide, nocarlipoamide (7), along with nocardimicin, a known compound found in Nocardia. The structure of the new decalipopeptide 7 was further extensively characterized using NMR, MS/MS, Marfey's analysis, and X-ray. In addition, the biosynthesis pathways for 1-7 were proposed through bioinformatics analysis, and thus the gene clusters responsible for biosynthesizing them were confirmed. Our results indicate that this strategy enables prompt dereplication of known compounds, rapid linkage of identified compounds with their biosynthesis gene cluster, and efficient discovery of new compounds.
Collapse
Affiliation(s)
- Shanshan Chang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Yajun Luo
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Mengyuan Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Ning He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Mingxu Chen
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Xinyue Huang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Jiahan Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Lijie Yuan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China.
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China.
| |
Collapse
|
5
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Kontomina E, Garefalaki V, Fylaktakidou KC, Evmorfidou D, Eleftheraki A, Avramidou M, Udoh K, Panopoulou M, Felföldi T, Márialigeti K, Fakis G, Boukouvala S. A taxonomically representative strain collection to explore xenobiotic and secondary metabolism in bacteria. PLoS One 2022; 17:e0271125. [PMID: 35834592 PMCID: PMC9282458 DOI: 10.1371/journal.pone.0271125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteria employ secondary metabolism to combat competitors, and xenobiotic metabolism to survive their chemical environment. This project has aimed to introduce a bacterial collection enabling comprehensive comparative investigations of those functions. The collection comprises 120 strains (Proteobacteria, Actinobacteria and Firmicutes), and was compiled on the basis of the broad taxonomic range of isolates and their postulated biosynthetic and/or xenobiotic detoxification capabilities. The utility of the collection was demonstrated in two ways: first, by performing 5144 co-cultures, recording inhibition between isolates and employing bioinformatics to predict biosynthetic gene clusters in sequenced genomes of species; second, by screening for xenobiotic sensitivity of isolates against 2-benzoxazolinone and 2-aminophenol. The co-culture medium of Bacillus siamensis D9 and Lysinibacillus sphaericus DSM 28T was further analysed for possible antimicrobial compounds, using liquid chromatography-mass spectrometry (LC-MS), and guided by computational predictions and the literature. Finally, LC-MS analysis demonstrated N-acetylation of 3,4-dichloroaniline (a toxic pesticide residue of concern) by the actinobacterium Tsukamurella paurometabola DSM 20162T which is highly tolerant of the xenobiotic. Microbial collections enable "pipeline" comparative screening of strains: on the one hand, bacterial co-culture is a promising approach for antibiotic discovery; on the other hand, bioremediation is effective in combating pollution, but requires knowledge of microbial xenobiotic metabolism. The presented outcomes are anticipated to pave the way for studies that may identify bacterial strains and/or metabolites of merit in biotechnological applications.
Collapse
Affiliation(s)
- Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasiliki Garefalaki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Dorothea Evmorfidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Eleftheraki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marina Avramidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen Udoh
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Giannoulis Fakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
7
|
Clark CM, Nguyen L, Pham VC, Sanchez LM, Murphy BT. Automated Microbial Library Generation Using the Bioinformatics Platform IDBac. Molecules 2022; 27:2038. [PMID: 35408437 PMCID: PMC9000433 DOI: 10.3390/molecules27072038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Libraries of microorganisms have served as a cornerstone of therapeutic drug discovery, though the continued re-isolation of known natural product chemical entities has remained a significant obstacle to discovery efforts. A major contributing factor to this redundancy is the duplication of bacterial taxa in a library, which can be mitigated through the use of a variety of DNA sequencing strategies and/or mass spectrometry-informed bioinformatics platforms so that the library is created with minimal phylogenetic, and thus minimal natural product overlap. IDBac is a MALDI-TOF mass spectrometry-based bioinformatics platform used to assess overlap within collections of environmental bacterial isolates. It allows environmental isolate redundancy to be reduced while considering both phylogeny and natural product production. However, manually selecting isolates for addition to a library during this process was time intensive and left to the researcher's discretion. Here, we developed an algorithm that automates the prioritization of hundreds to thousands of environmental microorganisms in IDBac. The algorithm performs iterative reduction of natural product mass feature overlap within groups of isolates that share high homology of protein mass features. Employing this automation serves to minimize human bias and greatly increase efficiency in the microbial strain prioritization process.
Collapse
Affiliation(s)
- Chase M. Clark
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA;
| | - Linh Nguyen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Nghiado, Caugiay, Hanoi 10000, Vietnam; (L.N.); (V.C.P.)
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Nghiado, Caugiay, Hanoi 10000, Vietnam; (L.N.); (V.C.P.)
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA;
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA;
| |
Collapse
|
8
|
Clark CM, Hernandez A, Mullowney MW, Fitz-Henley J, Li E, Romanowski SB, Pronzato R, Manconi R, Sanchez LM, Murphy BT. Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges. ISME COMMUNICATIONS 2022; 2:22. [PMID: 37938725 PMCID: PMC9723699 DOI: 10.1038/s43705-022-00105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2023]
Abstract
Microbial drug discovery programs rely heavily on accessing bacterial diversity from the environment to acquire new specialized metabolite (SM) lead compounds for the therapeutic pipeline. Therefore, knowledge of how commonly culturable bacterial taxa are distributed in nature, in addition to the degree of variation of SM production within those taxa, is critical to informing these front-end discovery efforts and making the overall sample collection and bacterial library creation process more efficient. In the current study, we employed MALDI-TOF mass spectrometry and the bioinformatics pipeline IDBac to analyze diversity within phylotype groupings and SM profiles of hundreds of bacterial isolates from two Eunapius fragilis freshwater sponges, collected 1.5 km apart. We demonstrated that within two sponge samples of the same species, the culturable bacterial populations contained significant overlap in approximate genus-level phylotypes but mostly nonoverlapping populations of isolates when grouped lower than the level of genus. Further, correlations between bacterial phylotype and SM production varied at the species level and below, suggesting SM distribution within bacterial taxa must be analyzed on a case-by-case basis. Our results suggest that two E. fragilis freshwater sponges collected in similar environments can exhibit large culturable diversity on a species-level scale, thus researchers should scrutinize the isolates with analyses that take both phylogeny and SM production into account to optimize the chemical space entering into a downstream bacterial library.
Collapse
Affiliation(s)
- Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael W Mullowney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jhewelle Fitz-Henley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Emma Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sean B Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Renata Manconi
- Dipartimento Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Rajwani R, Ohlemacher SI, Zhao G, Liu HB, Bewley CA. Genome-Guided Discovery of Natural Products through Multiplexed Low-Coverage Whole-Genome Sequencing of Soil Actinomycetes on Oxford Nanopore Flongle. mSystems 2021; 6:e0102021. [PMID: 34812649 PMCID: PMC8609971 DOI: 10.1128/msystems.01020-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022] Open
Abstract
Genome mining is an important tool for discovery of new natural products; however, the number of publicly available genomes for natural product-rich microbes such as actinomycetes, relative to human pathogens with smaller genomes, is small. To obtain contiguous DNA assemblies and identify large (ca. 10 to greater than 100 kb) biosynthetic gene clusters (BGCs) with high GC (>70%) and high-repeat content, it is necessary to use long-read sequencing methods when sequencing actinomycete genomes. One of the hurdles to long-read sequencing is the higher cost. In the current study, we assessed Flongle, a recently launched platform by Oxford Nanopore Technologies, as a low-cost DNA sequencing option to obtain contiguous DNA assemblies and analyze BGCs. To make the workflow more cost-effective, we multiplexed up to four samples in a single Flongle sequencing experiment while expecting low-sequencing coverage per sample. We hypothesized that contiguous DNA assemblies might enable analysis of BGCs even at low sequencing depth. To assess the value of these assemblies, we collected high-resolution mass spectrometry data and conducted a multi-omics analysis to connect BGCs to secondary metabolites. In total, we assembled genomes for 20 distinct strains across seven sequencing experiments. In each experiment, 50% of the bases were in reads longer than 10 kb, which facilitated the assembly of reads into contigs with an average N50 value of 3.5 Mb. The programs antiSMASH and PRISM predicted 629 and 295 BGCs, respectively. We connected BGCs to metabolites for N,N-dimethyl cyclic-di-tryptophan, two novel lasso peptides, and three known actinomycete-associated siderophores, namely, mirubactin, heterobactin, and salinichelin. IMPORTANCE Short-read sequencing of GC-rich genomes such as those from actinomycetes results in a fragmented genome assembly and truncated biosynthetic gene clusters (often 10 to >100 kb long), which hinders our ability to understand the biosynthetic potential of a given strain and predict the molecules that can be produced. The current study demonstrates that contiguous DNA assemblies, suitable for analysis of BGCs, can be obtained through low-coverage, multiplexed sequencing on Flongle, which provides a new low-cost workflow ($30 to 40 per strain) for sequencing actinomycete strain libraries.
Collapse
Affiliation(s)
- Rahim Rajwani
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shannon I. Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hong-Bing Liu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Elfeki M, Mantri S, Clark CM, Green SJ, Ziemert N, Murphy BT. Evaluating the Distribution of Bacterial Natural Product Biosynthetic Genes across Lake Huron Sediment. ACS Chem Biol 2021; 16:2623-2631. [PMID: 34605624 DOI: 10.1021/acschembio.1c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environmental microorganisms continue to serve as a major source of bioactive natural products (NPs) and as an inspiration for many other scaffolds in the toolbox of modern medicine. Nearly all microbial NP-inspired therapies can be traced to field expeditions to collect samples from the environment. Despite the importance of these expeditions in the search for new drugs, few studies have attempted to document the extent to which NPs or their corresponding production genes are distributed within a given environment. To gain insights into this, the geographic occurrence of NP ketosynthase (KS) and adenylation (A) domains was documented across 53 and 58 surface sediment samples, respectively, covering 59,590 square kilometers of Lake Huron. Overall, no discernible NP geographic distribution patterns were observed for 90,528 NP classes of nonribosomal peptides and polyketides detected in the survey. While each sampling location harbored a similar number of A domain operational biosynthetic units (OBUs), a limited overlap of OBU type was observed, suggesting that at the sequencing depth used in this study, no single location served as a NP "hotspot". These data support the hypothesis that there is ample variation in NP occurrence between sampling sites and suggest that extensive sample collection efforts are required to fully capture the functional chemical diversity of sediment microbial communities on a regional scale.
Collapse
Affiliation(s)
- Maryam Elfeki
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Shrikant Mantri
- German Centre for Infection Research (DZIF), Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Chase M. Clark
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Nadine Ziemert
- German Centre for Infection Research (DZIF), Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
11
|
Voser TM, Campbell MD, Carroll AR. How different are marine microbial natural products compared to their terrestrial counterparts? Nat Prod Rep 2021; 39:7-19. [PMID: 34651634 DOI: 10.1039/d1np00051a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 1877 to 2020A key challenge in natural products research is the selection of biodiversity to yield novel chemistry. Recently, marine microorganisms have become a preferred source. But how novel are marine microorganism natural products compared to those reported from terrestrial microbes? Cluster analysis of chemical fingerprints and molecular scaffold analysis of 55 817 compounds reported from marine and terrestrial microorganisms, and marine macro-organisms showed that 76.7% of the compounds isolated from marine microorganisms are closely related to compounds isolated from terrestrial microorganisms. Only 14.3% of marine microorganism natural products are unique when marine macro-organism natural products are also considered. Studies targeting marine specific and understudied microbial phyla result in a higher likelihood of finding marine specific compounds, whereas the depth and geographic location of microorganism collection have little influence. We recommend marine targeted strain isolation, incorporating early use of genomic sequencing to guide strain selection, innovation in culture media and cultivation techniques and the application of cheminformatics tools to focus on unique natural product diversity, rather than the dereplication of known compounds.
Collapse
Affiliation(s)
- Tanja M Voser
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| | - Max D Campbell
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Australian Rivers Institute-Coasts and Estuaries, Griffith University, Nathan, Australia.
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| |
Collapse
|
12
|
Serrano R, González-Menéndez V, Martínez G, Toro C, Martín J, Genilloud O, Tormo JR. Metabolomic Analysis of The Chemical Diversity of South Africa Leaf Litter Fungal Species Using an Epigenetic Culture-Based Approach. Molecules 2021; 26:molecules26144262. [PMID: 34299537 PMCID: PMC8305139 DOI: 10.3390/molecules26144262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial natural products are an invaluable resource for the biotechnological industry. Genome mining studies have highlighted the huge biosynthetic potential of fungi, which is underexploited by standard fermentation conditions. Epigenetic effectors and/or cultivation-based approaches have successfully been applied to activate cryptic biosynthetic pathways in order to produce the chemical diversity suggested in available fungal genomes. The addition of Suberoylanilide Hydroxamic Acid to fermentation processes was evaluated to assess its effect on the metabolomic diversity of a taxonomically diverse fungal population. Here, metabolomic methodologies were implemented to identify changes in secondary metabolite profiles to determine the best fermentation conditions. The results confirmed previously described effects of the epigenetic modifier on the metabolism of a population of 232 wide diverse South Africa fungal strains cultured in different fermentation media where the induction of differential metabolites was observed. Furthermore, one solid-state fermentation (BRFT medium), two classic successful liquid fermentation media (LSFM and YES) and two new liquid media formulations (MCKX and SMK-II) were compared to identify the most productive conditions for the different populations of taxonomic subgroups.
Collapse
|
13
|
Mai PY, Le Goff G, Poupon E, Lopes P, Moppert X, Costa B, Beniddir MA, Ouazzani J. Solid-Phase Extraction Embedded Dialysis (SPEED), an Innovative Procedure for the Investigation of Microbial Specialized Metabolites. Mar Drugs 2021; 19:md19070371. [PMID: 34206861 PMCID: PMC8304039 DOI: 10.3390/md19070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure developed to physically separate in-situ, during the cultivation, the mycelium of filament forming microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds, and prevents the aggregation of biomass or macromolecules on the XAD beads. The external nylon promotes the formation of a microbial biofilm, making SPEED a biofilm supported cultivation process. SPEED technology was applied to the marine Streptomyces albidoflavus 19-S21, isolated from a core of a submerged Kopara sampled at 20 m from the border of a saltwater pond. The chemical space of this strain was investigated effectively using a dereplication strategy based on molecular networking and in-depth chemical analysis. The results highlight the impact of culture support on the molecular profile of Streptomyces albidoflavus 19-S21 secondary metabolites.
Collapse
Affiliation(s)
- Phuong-Y. Mai
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Géraldine Le Goff
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
| | - Erwan Poupon
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Philippe Lopes
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
| | - Xavier Moppert
- PACIFIC BIOTECH SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia; (X.M.); (B.C.)
| | - Bernard Costa
- PACIFIC BIOTECH SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia; (X.M.); (B.C.)
| | - Mehdi A. Beniddir
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Jamal Ouazzani
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
- Correspondence: ; Tel.: +33-6-82-81-65-90
| |
Collapse
|
14
|
Zhang F, Zhao M, Braun DR, Ericksen SS, Piotrowski JS, Nelson J, Peng J, Ananiev GE, Chanana S, Barns K, Fossen J, Sanchez H, Chevrette MG, Guzei IA, Zhao C, Guo L, Tang W, Currie CR, Rajski SR, Audhya A, Andes DR, Bugni TS. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science 2020; 370:974-978. [PMID: 33214279 PMCID: PMC7756952 DOI: 10.1126/science.abd6919] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Miao Zhao
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer S Ericksen
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | | | | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Ananiev
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth Barns
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Jen Fossen
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Changgui Zhao
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Guo
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Weiping Tang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|