1
|
Iglesias-Menduiña O, Novegil D, Martínez C, Alvarez R, de Lera AR. From Acyclic Intramolecular-[4 + 2]- to Transannular Bis-[4 + 2]-Cycloaddition of the Macrodiolide for the Stereoselective Synthesis of the Octahydronaphthalene Core of Polyenic Macrolactam Sagamilactam. Org Lett 2024; 26:6614-6618. [PMID: 39079003 PMCID: PMC11472481 DOI: 10.1021/acs.orglett.4c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The strategy for the synthesis of the octahydronaphthalene core of natural macrolide sagamilactam has unintentionally evolved from the acyclic intramolecular (IMDA) to the transannular (TADA) Diels-Alder reaction. Lewis acid-promoted IMDA of a protected 2Z,8E,10E-4,6,12-trihydroxy-2,8,10-decatrienal model with a diol of 4,6-anti relative configuration, as proposed by DP4+-based computational studies, afforded the cis-octahydronaphthalene diastereomer through the Re-endo approach. The 26-membered macrodiolide generated, under thermal reaction conditions, the trans-octahydronaphthalene by a double TADA reaction along the desired Si-exo orientation.
Collapse
Affiliation(s)
| | | | - Claudio Martínez
- CINBIO, Departamento de Química
Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| | - Rosana Alvarez
- CINBIO, Departamento de Química
Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| | - Angel R. de Lera
- CINBIO, Departamento de Química
Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
2
|
Kudo F. Biosynthesis of macrolactam antibiotics with β-amino acid polyketide starter units. J Antibiot (Tokyo) 2024; 77:486-498. [PMID: 38816450 PMCID: PMC11284099 DOI: 10.1038/s41429-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Macrolactam antibiotics incorporating β-amino acid polyketide starter units, isolated primarily from Actinomycetes species, show significant biological activities. This review provides a detailed analysis into the biosynthetic studies of vicenistatin, a macrolactam antibiotic with a 3-aminoisobutyrate starter unit, as well as biosynthetic research on related macrolactam compounds. Firstly, the elucidation of a common mechanism for the incorporation of β-amino acid starter units into the polyketide synthase (PKS) is described. Secondly, the unique biosynthetic mechanisms of the β-amino acids that are used to supply the main macrolactam biosynthetic pathways with starter units are discussed. Thirdly, some distinctive post-PKS modification mechanisms that complete macrolactam antibiotic biosynthesis are summarized. Finally, future directions for creating new macrolactam compounds through engineered biosynthesis pathways are described.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
3
|
Zheng Y, Sakai K, Watanabe K, Takagi H, Sato-Shiozaki Y, Misumi Y, Miyanoiri Y, Kurisu G, Nogawa T, Takita R, Takahashi S. Iron-sulphur protein catalysed [4+2] cycloadditions in natural product biosynthesis. Nat Commun 2024; 15:5779. [PMID: 38987535 PMCID: PMC11236979 DOI: 10.1038/s41467-024-50142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
To the best of our knowledge, enzymes that catalyse intramolecular Diels-Alder ([4+2] cycloaddition) reactions are frequently reported in natural product biosynthesis; however, no native enzymes utilising Lewis acid catalysis have been reported. Verticilactam is a representative member of polycyclic macrolactams, presumably produced by spontaneous cycloaddition. We report that the intramolecular [4+2] cycloadditions can be significantly accelerated by ferredoxins (Fds), a class of small iron-sulphur (Fe-S) proteins. Through iron atom substitution by Lewis acidic gallium (Ga) iron and computational calculations, we confirm that the ubiquitous Fe-S cluster efficiently functions as Lewis acid to accelerate the tandem [4+2] cycloaddition and Michael addition reactions by lowering free energy barriers. Our work highlights Nature's ingenious strategy to generate complex molecule structures using the ubiquitous Fe-S protein. Furthermore, our study sheds light on the future design of Fd as a versatile Lewis acid catalyst for [4+2] cycloaddition reactions.
Collapse
Affiliation(s)
- Yu Zheng
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Katsuyuki Sakai
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroshi Takagi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Yumi Sato-Shiozaki
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Yuko Misumi
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Toshihiko Nogawa
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.
| |
Collapse
|
4
|
Chen L, Liu K, Hong J, Cui Z, He W, Wang Y, Deng Z, Tao M. The Discovery of Weddellamycin, a Tricyclic Polyene Macrolactam Antibiotic from an Antarctic Deep-Sea-Derived Streptomyces sp. DSS69, by Heterologous Expression. Mar Drugs 2024; 22:189. [PMID: 38667806 PMCID: PMC11051340 DOI: 10.3390/md22040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Polyene macrolactams are a special group of natural products with great diversity, unique structural features, and a wide range of biological activities. Herein, a cryptic gene cluster for the biosynthesis of putative macrolactams was disclosed from a sponge-associated bacterium, Streptomyces sp. DSS69, by genome mining. Cloning and heterologous expression of the whole biosynthetic gene cluster led to the discovery of weddellamycin, a polyene macrolactam bearing a 23/5/6 ring skeleton. A negative regulator, WdlO, and two positive regulators, WdlA and WdlB, involved in the regulation of weddellamycin production were unraveled. The fermentation titer of weddellamycin was significantly improved by overexpression of wdlA and wdlB and deletion of wdlO. Notably, weddellamycin showed remarkable antibacterial activity against various Gram-positive bacteria including MRSA, with MIC values of 0.10-0.83 μg/mL, and antifungal activity against Candida albicans, with an MIC value of 3.33 μg/mL. Weddellamycin also displayed cytotoxicity against several cancer cell lines, with IC50 values ranging from 2.07 to 11.50 µM.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Kai Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Jiali Hong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Zhanzhao Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Weijun He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
5
|
Gu W, Zhang JZH. Substituent effects on the selectivity of ambimodal [6+4]/[4+2] cycloaddition. Phys Chem Chem Phys 2024; 26:9636-9644. [PMID: 38466583 DOI: 10.1039/d3cp06320h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In this work, we report a density functional theory (DFT) study and a dynamical trajectory study of substituent effects on the ambimodal [6+4]/[4+2] cycloaddition proposed for 1,3,5,10,12-cycloheptadecapentaene, referred to as cycloheptadecapentaene. The proposed cycloaddition proceeds through an ambimodal transition state, which results in both a [6+4] adduct a [4+2] adduct directly. The [6+4] adduct can be readily converted to the [4+2] adduct via a Cope rearrangement. We study the selectivity of the reaction with regard to the position of substituents, steric effects of substituents, and electronic effects of substituents. In the dynamical trajectory study, we find that nitro-substituted reactants lead to a new product from the ambimodal transition state via the hetero Diels-Alder reaction, and this new product can then be converted to a [4+2] adduct by a hetero [3, 3]-sigmatropic rearrangement. These results may provide insights for designing more bridged heterocyclic compounds.
Collapse
Affiliation(s)
- Wenhao Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China.
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China.
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of AI and DL, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200126, China
- Department of Chemistry, New York University, NY, NY10003, USA
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
6
|
Shen J, Sun J, Yin S, Zhu W, Fu P. Structurally Diverse Macrolactams from an Antarctic Streptomyces Species. JOURNAL OF NATURAL PRODUCTS 2024; 87:404-414. [PMID: 38288586 DOI: 10.1021/acs.jnatprod.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Twelve new polyenic macrolactams, cyclamenols G-R (1 and 3-13), together with the known analogue cyclamenol A (2), were isolated from Streptomyces sp. OUCMDZ-4348. Their structures were elucidated by spectroscopic analysis, quantum chemical calculations, chemical derivatizations, and Mosher's methods. The sequenced genome of OUCMDZ-4348 revealed the putative biosynthetic gene cluster of cyclamenols. It was proposed that the polycyclic natural products, cyclamenols H-R, might be formed from cyclamenols A and G through nonenzymatic intramolecular cycloadditions and oxidative cyclizations.
Collapse
Affiliation(s)
- Jingjing Shen
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiwen Sun
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Shupeng Yin
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| |
Collapse
|
7
|
Seibel E, Um S, Dayras M, Bodawatta KH, de Kruijff M, Jønsson KA, Poulsen M, Kim KH, Beemelmanns C. Genome mining for macrolactam-encoding gene clusters allowed for the network-guided isolation of β-amino acid-containing cyclic derivatives and heterologous production of ciromicin A. Commun Chem 2023; 6:257. [PMID: 37985888 PMCID: PMC10662134 DOI: 10.1038/s42004-023-01034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
β-Amino acid-containing macrolactams represent a structurally diverse group of bioactive natural products derived from polyketides; however we are currently lacking a comprehensive overview about their abundance across bacterial families and the underlying biosynthetic diversity. In this study, we employed a targeted β-amino acid-specific homology-based multi-query search to identify potential bacterial macrolactam producers. Here we demonstrate that approximately 10% of each of the identified actinobacterial genera harbor a biosynthetic gene cluster (BGC) encoding macrolactam production. Based on our comparative study, we propose that mutations occurring in specific regions of polyketide synthases (PKS) are the primary drivers behind the variation in macrolactam ring sizes. We successfully validated two producers of ciromicin A from the genus Amycolatopsis, revised the composition of the biosynthetic gene cluster region mte of macrotermycins, and confirmed the ciromicin biosynthetic pathway through heterologous expression. Additionally, network-based metabolomic analysis uncovered three previously unreported macrotermycin congeners from Amycolatopsis sp. M39. The combination of targeted mining and network-based analysis serves as a powerful tool for identifying macrolactam producers and our studies will catalyze the future discovery of yet unreported macrolactams.
Collapse
Affiliation(s)
- Elena Seibel
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Anti-Infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Incheon, 12983, Republic of Korea
| | - Marie Dayras
- Anti-Infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Kasun H Bodawatta
- Globe Institute, Section for Molecular Ecology and Evolution, University of Copenhagen, 1350, Copenhagen K, Denmark
- Natural History Museum of Denmark - Research and Collections, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Martinus de Kruijff
- Anti-Infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Knud A Jønsson
- Natural History Museum of Denmark - Research and Collections, University of Copenhagen, 2100, Copenhagen East, Denmark
- Section for Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18, Stockholm, Sweden
| | - Michael Poulsen
- Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Anti-Infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany.
- Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
8
|
Miyanaga A, Nagata K, Nakajima J, Chisuga T, Kudo F, Eguchi T. Structural Basis of Amide-Forming Adenylation Enzyme VinM in Vicenistatin Biosynthesis. ACS Chem Biol 2023; 18:2343-2348. [PMID: 37870408 DOI: 10.1021/acschembio.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Adenylation enzymes activate amino acid substrates to aminoacyl adenylates and generally transfer this moiety onto the thiol group of the phosphopantetheine arm of a carrier protein for the selective incorporation of aminoacyl building blocks in natural product biosynthesis. In contrast to the canonical thioester-forming adenylation enzymes, the amide-forming adenylation enzyme VinM transfers an l-alanyl group onto the amino group of the aminoacyl unit attached to the phosphopantetheine arm of the carrier protein VinL to generate dipeptidyl-VinL in vicenistatin biosynthesis. It is unclear how VinM distinguishes aminoacyl-VinL from VinL for amide bond formation. Herein we describe structural and biochemical analyses of VinM. We determined the crystal structure of VinM in complex with VinL using a designed pantetheine-type cross-linking probe. The VinM-VinL complex structure in combination with site-directed mutagenesis analysis revealed that the interactions with both the phosphopantetheine arm and VinL are critical for the amide-forming activity of VinM.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kenji Nagata
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Joji Nakajima
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| |
Collapse
|
9
|
Shin YH, Im JH, Kang I, Kim E, Jang SC, Cho E, Shin D, Hwang S, Du YE, Huynh TH, Ko K, Ko YJ, Nam SJ, Awakawa T, Lee J, Hong S, Abe I, Moore BS, Fenical W, Yoon YJ, Cho JC, Lee SK, Oh KB, Oh DC. Genomic and Spectroscopic Signature-Based Discovery of Natural Macrolactams. J Am Chem Soc 2023; 145:1886-1896. [PMID: 36634356 DOI: 10.1021/jacs.2c11527] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The logical and effective discovery of macrolactams, structurally unique natural molecules with diverse biological activities, has been limited by a lack of targeted search methods. Herein, a targeted discovery method for natural macrolactams was devised by coupling genomic signature-based PCR screening of a bacterial DNA library with spectroscopic signature-based early identification of macrolactams. DNA library screening facilitated the efficient selection of 43 potential macrolactam-producing strains (3.6% of 1,188 strains screened). The PCR amplicons of the amine-deprotecting enzyme-coding genes were analyzed to predict the macrolactam type (α-methyl, α-alkyl, or β-methyl) produced by the hit strains. 1H-15N HSQC-TOCSY NMR analysis of 15N-labeled culture extracts enabled macrolactam detection and structural type assignment without any purification steps. This method identified a high-titer Micromonospora strain producing salinilactam (1), a previously reported α-methyl macrolactam, and two Streptomyces strains producing new α-alkyl and β-methyl macrolactams. Subsequent purification and spectroscopic analysis led to the structural revision of 1 and the discovery of muanlactam (2), an α-alkyl macrolactam with diene amide and tetraene chromophores, and concolactam (3), a β-methyl macrolactam with a [16,6,6]-tricyclic skeleton. Detailed genomic analysis of the strains producing 1-3 identified putative biosynthetic gene clusters and pathways. Compound 2 displayed significant cytotoxicity against various cancer cell lines (IC50 = 1.58 μM against HCT116), whereas 3 showed inhibitory activity against Staphylococcus aureus sortase A. This genomic and spectroscopic signature-based method provides an efficient search strategy for new natural macrolactams and will be generally applicable for the discovery of nitrogen-bearing natural products.
Collapse
Affiliation(s)
- Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Eunji Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daniel Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eun Du
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Thanh-Hau Huynh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Keebeom Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center of Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Jeeyeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,MolGenBio Co., Ltd., Seoul 08826, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Kanoh N. Naturally Occurring Polyene Macrolactams as Pluripotent Stem Molecules: Their Chemistry and Biology, and Efforts toward the Creation of Polyene Macrolactam-based Induced Pluripotent Small Molecules. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences, and Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
11
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
12
|
Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar Drugs 2022; 20:md20060360. [PMID: 35736163 PMCID: PMC9230918 DOI: 10.3390/md20060360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades (covering 1972 to 2022), astounding progress has been made in the elucidation of structures, bioactivities and biosynthesis of polyene macrolactams (PMLs), but they have only been partially summarized. PMLs possess a wide range of biological activities, particularly distinctive fungal inhibitory abilities, which render them a promising drug candidate. Moreover, the unique biosynthetic pathways including β-amino acid initiation and pericyclic reactions were presented in PMLs, leading to more attention from inside and outside the natural products community. According to current summation, in this review, the chem- and bio-diversity of PMLs from marine and terrestrial sources are considerably rich. A systematic, critical and comprehensive overview is in great need. This review described the PMLs’ general structural features, production strategies, biosynthetic pathways and the mechanisms of bioactivities. The challenges and opportunities for the research of PMLs are also discussed.
Collapse
|
13
|
Kanoh N, Terashima R, Nishiyama H, Terajima Y, Nagasawa S, Sasano Y, Iwabuchi Y, Saito H, Egoshi S, Dodo K, Sodeoka M, Pan C, Ikeuchi Y, Nishimura S, Kakeya H. Design, Synthesis, and Antifungal Activity of 16,17-Dihydroheronamide C and ent-Heronamide C. J Org Chem 2021; 86:16249-16258. [PMID: 34784214 DOI: 10.1021/acs.joc.1c01761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
16,17-Dihydroheronamide C (8) and ent-heronamide C (ent-1) were designed as probes for the mode-of-action analysis of heronamide C (1). These molecules were synthesized by utilizing a highly modular strategy developed in the preceding paper. The evaluation of the antifungal activity of these compounds revealed the exceptional importance of the C16-C17 double bond for the antifungal activity of heronamide C and the existence of chiral recognition between heronamide C (1) and cell membrane components.
Collapse
Affiliation(s)
- Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.,Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ryusei Terashima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiromichi Nishiyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yuta Terajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yusuke Sasano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroaki Saito
- Faculty of Pharmaceutical Sciences, Hokuriku University, 3 Kanagawamachi, Kanazawa, Ishikawa 920-1181, Japan
| | - Syusuke Egoshi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chengqian Pan
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimo-Adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Ikeuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimo-Adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimo-Adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Kanoh N, Terajima Y, Tanaka S, Terashima R, Nishiyama H, Nagasawa S, Sasano Y, Iwabuchi Y, Nishimura S, Kakeya H. Toward the Creation of Induced Pluripotent Small (iPS) Molecules: Establishment of a Modular Synthetic Strategy for the Heronamide C-type Polyene Macrolactams and Their Conformational and Reactivity Analysis. J Org Chem 2021; 86:16231-16248. [PMID: 34797655 DOI: 10.1021/acs.joc.1c01760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly modular synthetic strategy for the heronamide C-type polyene macrolactams was established by synthesizing 8-deoxyheronamide C (2). The developed strategy enabled not only the total synthesis of 8-deoxyheronamide C (2) but also the unified synthesis of four heronamide-like molecules named "heronamidoids" (5-8). Conformational and reactivity analysis of the heronamidoids clarified that (1) the C19 stereochemistry mainly affected the conformation of the amide linkage, resulting in the change of alignment of two polyene units and reactivity toward photochemical [6π + 6π] cycloaddition, and (2) the C8,C9-diol moiety is important for the conversion to the heronamide A-type skeleton from the heronamide C skeleton.
Collapse
Affiliation(s)
- Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.,Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuta Terajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Suguru Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Ryusei Terashima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiromichi Nishiyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yusuke Sasano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimo-Adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|