1
|
Wang W, Guo S, Hou Q, Zhang C, Gao Z, Zhou J, Fei Q. Bioupcycling Methane and CO 2 for Succinate Production by an Engineered Type I Methanotrophic Bacterium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24237-24245. [PMID: 39269285 DOI: 10.1021/acs.jafc.4c05097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Methane, a byproduct of agricultural activities, has shown potential as a nonedible substrate for biomanufacturing. The production of succinate by a methanotrophic bacterium utilizing methane presents an innovative route for the sustainable synthesis of chemicals. In this study, Methylotuvimicrobium buryatense 5GB1S was genetically modified through the reconstruction of an artificial serine cycle to enable the bioconversion of both methane and CO2 into succinate. The 13C labeling analysis confirmed the CO2 fixing in M. buryatense 5GB1S, leading to a 46% improvement in carbon conversion efficiency and a 107% increase in succinate production compared to the wild-type strain. The transcriptome data on carbon metabolisms was assessed to guide future optimizations for strengthening the overall carbon flux from methane to succinate. Finally, the maximum succinate titer of 299.36 mg/L was achieved under oxygen-limited conditions in 3 L bioreactors, which resulted in the volumetric productivity of 199.60 mg/L/day, representing a 23-fold enhancement compared to the wild-type strain. This study offers a new strategy for upcycling greenhouse gases into succinate in a sustainable manner through methanotrophic-based biomanufacturing.
Collapse
Affiliation(s)
- Weiting Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qianzi Hou
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Chenyue Zhang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zixi Gao
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
2
|
Casey D, Diaz-Garcia L, Yu M, Tee KL, Wong TS. From Knallgas Bacterium to Promising Biomanufacturing Host: The Evolution of Cupriavidus necator. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39363001 DOI: 10.1007/10_2024_269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The expanding field of synthetic biology requires diversification of microbial chassis to expedite the transition from a fossil fuel-dependent economy to a sustainable bioeconomy. Relying exclusively on established model organisms such as Escherichia coli and Saccharomyces cerevisiae may not suffice to drive the profound advancements needed in biotechnology. In this context, Cupriavidus necator, an extraordinarily versatile microorganism, has emerged as a potential catalyst for transformative breakthroughs in industrial biomanufacturing. This comprehensive book chapter offers an in-depth review of the remarkable technological progress achieved by C. necator in the past decade, with a specific focus on the fields of molecular biology tools, metabolic engineering, and innovative fermentation strategies. Through this exploration, we aim to shed light on the pivotal role of C. necator in shaping the future of sustainable bioprocessing and bioproduct development.
Collapse
Affiliation(s)
- Daniel Casey
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Laura Diaz-Garcia
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Mincen Yu
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Kang Lan Tee
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
| | - Tuck Seng Wong
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK.
- Evolutor Ltd, The Innovation Centre, Sheffield, UK.
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science & Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand.
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia.
| |
Collapse
|
3
|
Collas F, Dronsella BB, Kubis A, Schann K, Binder S, Arto N, Claassens NJ, Kensy F, Orsi E. Engineering the biological conversion of formate into crotonate in Cupriavidus necator. Metab Eng 2023; 79:49-65. [PMID: 37414134 DOI: 10.1016/j.ymben.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
To advance the sustainability of the biobased economy, our society needs to develop novel bioprocesses based on truly renewable resources. The C1-molecule formate is increasingly proposed as carbon and energy source for microbial fermentations, as it can be efficiently generated electrochemically from CO2 and renewable energy. Yet, its biotechnological conversion into value-added compounds has been limited to a handful of examples. In this work, we engineered the natural formatotrophic bacterium C. necator as cell factory to enable biological conversion of formate into crotonate, a platform short-chain unsaturated carboxylic acid of biotechnological relevance. First, we developed a small-scale (150-mL working volume) cultivation setup for growing C. necator in minimal medium using formate as only carbon and energy source. By using a fed-batch strategy with automatic feeding of formic acid, we could increase final biomass concentrations 15-fold compared to batch cultivations in flasks. Then, we engineered a heterologous crotonate pathway in the bacterium via a modular approach, where each pathway section was assessed using multiple candidates. The best performing modules included a malonyl-CoA bypass for increasing the thermodynamic drive towards the intermediate acetoacetyl-CoA and subsequent conversion to crotonyl-CoA through partial reverse β-oxidation. This pathway architecture was then tested for formate-based biosynthesis in our fed-batch setup, resulting in a two-fold higher titer, three-fold higher productivity, and five-fold higher yield compared to the strain not harboring the bypass. Eventually, we reached a maximum product titer of 148.0 ± 6.8 mg/L. Altogether, this work consists in a proof-of-principle integrating bioprocess and metabolic engineering approaches for the biological upgrading of formate into a value-added platform chemical.
Collapse
Affiliation(s)
| | - Beau B Dronsella
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Karin Schann
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | | | - Enrico Orsi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Ding Q, Ye C. Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application. Microb Biotechnol 2023; 16:709-725. [PMID: 36604311 PMCID: PMC10034640 DOI: 10.1111/1751-7915.14206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life SciencesAnhui UniversityHefeiChina
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education InstitutesAnhui UniversityHefeiChina
- Anhui Key Laboratory of Modern BiomanufacturingHefeiChina
| | - Chao Ye
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| |
Collapse
|
5
|
Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bioplastics are polymers made from sustainable bio-based feedstocks. While the potential of producing bio-based monomers in microbes has been investigated for decades, their economic feasibility is still unsatisfactory compared with petroleum-derived methods. To improve the overall synthetic efficiency of microbial cell factories, three main strategies were summarized in this review: firstly, implementing approaches to improve the microbial utilization ability of cheap and abundant substrates; secondly, developing methods at enzymes, pathway, and cellular levels to enhance microbial production performance; thirdly, building technologies to enhance microbial pH, osmotic, and metabolites stress tolerance. Moreover, the challenges of, and some perspectives on, exploiting microorganisms as efficient cell factories for producing bio-based monomers are also discussed.
Collapse
|
6
|
Haas R, Nikel PI. Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism. Trends Biotechnol 2023; 41:27-45. [PMID: 35786519 DOI: 10.1016/j.tibtech.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
The relatively narrow spectrum of chemical elements within the microbial 'biochemical palate' limits the reach of biotechnology, because several added-value compounds can only be produced with traditional organic chemistry. Synthetic biology offers enabling tools to tackle this issue by facilitating 'biologization' of non-canonical chemical atoms. The interplay between xenobiology and synthetic metabolism multiplies routes for incorporating nonbiological atoms into engineered microbes. In this review, we survey natural assimilation routes for elements beyond the essential biology atoms [i.e., carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S)], discussing how these mechanisms could be repurposed for biotechnology. Furthermore, we propose a computational framework to identify chemical elements amenable to biologization, ranking reactions suitable to build synthetic metabolism. When combined and deployed in robust microbial hosts, these approaches will offer sustainable alternatives for smart chemical production.
Collapse
Affiliation(s)
- Robert Haas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Zhu L, Zhang H, Wang S, Zhao A, Qu L, Xiong W, Alam MA, Ma W, Lv Y, Xu J. Screening a Panel of Acid-producing Strains by Developing a High-throughput Method. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Chopra M, Kumar V, Singh M, Aggarwal NK. An overview about the approaches used in the production of alpha-ketoglutaric acid with their applications. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Alpha ketoglutaric acid is a biological compound found naturally in the human body. It plays an important role in the cell metabolism and has a role in various metabolic pathways including Kreb’s cycle, protein metabolism and so on. Keto glutaric acid is chemically prepared from succinic acid and oxalic acid. It is a direct precursor of glutamic acid and triazines. It can be produced by oxidative decarboxylation of isocitrate by isocitrate dehydrogenase. The yeast Yarrowia lipolytica is used as a prospective producer of alpha ketoglutaric acid from ethanol. The capability to synthesize Keto glutaric acid has so far been investigated for many microorganisms such as Pseudomonas fluoroscens
, Bacillus subtilis
etc. P. fluoroscens have the ability to synthesize a huge amount of alpha ketoglutaric acid in a glycerol medium supplemented with manganese (Mn). The Mangnese has a significant impact on glycerol metabolism resulting in the buildup of alpha ketoglutaric acid. The metabolism of succinate may result in the production of alpha ketoglutarate. Despite its importance in TCA cycle, alpha ketoglutaric acid buildup as an intermediate product of bacterial glucose oxidation. Along with chemical synthesis and microbial fermentation, enzymatic transformation can also be used to produce alpha ketoglutaric acid. Biodiesel waste is considered as cheap and renewable carbon source for the development of alpha ketoglutaric acid. Alpha ketoglutarate is used for kidney disease, intestinal and stomach disorders and many other conditions. It also plays an important role in the food industry as food and nutrient enhancers. The review is covering all the aspects related with the Alpha ketoglutaric acid production, utilization and product recovery.
Collapse
Affiliation(s)
- Monika Chopra
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Vikas Kumar
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Manoj Singh
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Neeraj K. Aggarwal
- Department of Microbiology , Kurukshetra University , Kurukshetra , 136119 , India
| |
Collapse
|
9
|
Hans S, Kumar N, Gohil N, Khambhati K, Bhattacharjee G, Deb SS, Maurya R, Kumar V, Reshamwala SMS, Singh V. Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms. Microb Cell Fact 2022; 21:100. [PMID: 35643549 PMCID: PMC9148472 DOI: 10.1186/s12934-022-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/15/2022] [Indexed: 12/01/2022] Open
Abstract
The surging demand of value-added products has steered the transition of laboratory microbes to microbial cell factories (MCFs) for facilitating production of large quantities of important native and non-native biomolecules. This shift has been possible through rewiring and optimizing different biosynthetic pathways in microbes by exercising frameworks of metabolic engineering and synthetic biology principles. Advances in genome and metabolic engineering have provided a fillip to create novel biomolecules and produce non-natural molecules with multitude of applications. To this end, numerous MCFs have been developed and employed for production of non-natural nucleic acids, proteins and different metabolites to meet various therapeutic, biotechnological and industrial applications. The present review describes recent advances in production of non-natural amino acids, nucleic acids, biofuel candidates and platform chemicals.
Collapse
|
10
|
Son J, Joo JC, Baritugo KA, Jeong S, Lee JY, Lim HJ, Lim SH, Yoo JI, Park SJ. Consolidated microbial production of four-, five-, and six-carbon organic acids from crop residues: Current status and perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127001. [PMID: 35292386 DOI: 10.1016/j.biortech.2022.127001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The production of platform organic acids has been heavily dependent on petroleum-based industries. However, petrochemical-based industries that cannot guarantee a virtuous cycle of carbons released during various processes are now facing obsolescence because of the depletion of finite fossil fuel reserves and associated environmental pollutions. Thus, the transition into a circular economy in terms of the carbon footprint has been evaluated with the development of efficient microbial cell factories using renewable feedstocks. Herein, the recent progress on bio-based production of organic acids with four-, five-, and six-carbon backbones, including butyric acid and 3-hydroxybutyric acid (C4), 5-aminolevulinic acid and citramalic acid (C5), and hexanoic acid (C6), is discussed. Then, the current research on the production of C4-C6 organic acids is illustrated to suggest future directions for developing crop-residue based consolidated bioprocessing of C4-C6 organic acids using host strains with tailor-made capabilities.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
11
|
Jung S, MacConaghy KI, Guarnieri MT, Kaar JL, Stoykovich MP. Quantification of Metabolic Products from Microbial Hosts in Complex Media Using Optically Diffracting Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:1252-1258. [PMID: 35166523 DOI: 10.1021/acsabm.1c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein describe a highly versatile platform approach for the in situ and real-time screening of microbial biocatalysts for enhanced production of bioproducts using photonic crystal hydrogels. This approach was demonstrated by preparing optically diffracting films based on polymerized N-isopropylacrylamide that contracted in the presence of alcohols and organic acids. The hydrogel films were prepared in a microwell plate format, which allows for high-throughput screening, and characterized optically using a microwell plate reader. While demonstrating the ability to detect a broad range of relevant alcohols and organic acids, we showed that the response of the films correlated strongly with the octanol-water partition coefficient (log P) of the analyte. Differences in the secretion of ethanol and succinic acid from strains of Zymomonas mobilis and Actinobacillus succinogenes, respectively, were further detected via optical characterization of the films. These differences, which in some cases were as low as ∼3 g/L, were confirmed by high-performance liquid chromatography, thereby demonstrating the sensitivity of this approach. Our findings highlight the potential utility of this multiplexed approach for the detection of small organic analytes in complex biological media, which overcomes a major challenge in conventional optical sensing methods.
Collapse
Affiliation(s)
- Sukwon Jung
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Kelsey I MacConaghy
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Mark P Stoykovich
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Liang G, Zhou P, Lu J, Liu H, Qi Y, Gao C, Guo L, Hu G, Chen X, Liu L. Dynamic regulation of membrane integrity to enhance l-malate stress tolerance in Candida glabrata. Biotechnol Bioeng 2021; 118:4347-4359. [PMID: 34302701 DOI: 10.1002/bit.27903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Microbial cell factories provide a sustainable and economical way to produce chemicals from renewable feedstocks. However, the accumulation of targeted chemicals can reduce the robustness of the industrial strains and affect the production performance. Here, the physiological functions of Mediator tail subunit CgMed16 at l-malate stress were investigated. Deletion of CgMed16 decreased the survival, biomass, and half-maximal inhibitory concentration (IC50 ) by 40.4%, 34.0%, and 30.6%, respectively, at 25 g/L l-malate stress. Transcriptome analysis showed that this growth defect was attributable to changes in the expression of genes involved in lipid metabolism. In addition, tolerance transcription factors CgUSV1 and CgYAP3 were found to interact with CgMed16 to regulate sterol biosynthesis and glycerophospholipid metabolism, respectively, ultimately endowing strains with excellent membrane integrity to resist l-malate stress. Furthermore, a dynamic tolerance system (DTS) was constructed based on CgUSV1, CgYAP3, and an l-malate-driven promoter Pcgr-10 to improve the robustness and productive capacity of Candida glabrata. As a result, the biomass, survival, and membrane integrity of C. glabrata 012 (with DTS) increased by 22.6%, 31.3%, and 53.8%, respectively, compared with those of strain 011 (without DTS). Therefore, at shake-flask scale, strain 012 accumulated 35.5 g/L l-malate, and the titer and productivity of l-malate increased by 32.5% and 32.1%, respectively, compared with those of strain 011. This study provides a novel strategy for the rational design and construction of DTS for dynamically enhancing the robustness of industrial strains.
Collapse
Affiliation(s)
- Guangjie Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jiaxin Lu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|