1
|
Chen Z, Zhang X, Geng W, Gong C, Li Z, Chen C, Zhang Y, Wang G. Na 2MnSiO 4/C as hybrid capacitive deionization electrode material to enhance desalination performance. J Colloid Interface Sci 2024; 662:627-636. [PMID: 38367580 DOI: 10.1016/j.jcis.2024.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
The utilization of Na2MnSiO4 as a Faraday electrode in hybrid capacitive deionization (HCDI) is investigated to achieve efficient desalination. The Na2MnSiO4/C (NMSO) materials were fabricated via a simple sol-gel method, in which the synthesis process was modulated by adjusting the volume ratio of ethanol to water. When maintaining the volume ratio of water to ethanol at 3:1, the resultant NMSO-3/1 exhibited expected salt adsorption capacity of 31.06 mg g-1 and salt adsorption rate of 20.43 mg g-1 min-1. This distinguished desalination performance was mainly attributed to its inherent multiple redox pairs, as well as the integration of ethanol, which enhanced both specific capacitance and hydrophilicity of the material. This study opens a new perspective for the development of highly efficient materials in HCDI.
Collapse
Affiliation(s)
- Zhouyi Chen
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Xiao Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Wusong Geng
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Chengyun Gong
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, PR China
| | - Zeyang Li
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Chun Chen
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yunxia Zhang
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Guozhong Wang
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, PR China.
| |
Collapse
|
2
|
Gao M, Liang W, Yang Z, Ao T, Chen W. Flexible ultrathin Nitrogen-Doped carbon mediates the surface charge redistribution of a hierarchical tin disulfide nanoflake electrode for efficient capacitive deionization. J Colloid Interface Sci 2023; 650:1244-1252. [PMID: 37478741 DOI: 10.1016/j.jcis.2023.07.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Constructing pseudocapacitive electrodes with high specific capacities is indispensable for increasing the large-scale application of capacitive deionization (CDI). However, the insufficient CDI rate and cycling performance of pseudocapacitive-based electrodes have led to a decline in their use due to the corresponding volumetric expansion and contraction that occurs during long-term CDI processes. Herein, hierarchical porous SnS2 nanoflakes are encapsulated inside an N-doped carbon (NC) matrix to achieve efficient CDI. Benefiting from the synergistic properties of the pseudocapacitive SnS2 nanoflakes and few-layered N-doped carbon, the heterogeneous interface simultaneously provides more available vigorous sites and demonstrates rapid charge-transfer kinetics, resulting in a superior desalination capability (49.86 mg g-1 at 1.2 V), rapid desalination rate (1.66 mg g-1 min-1) and better cyclic stability. Computational research reveals a work function-induced surface charge redistribution of the SnS2@NC heterojunction, which can lead to an auspicious surface electronic structure that reduces the adsorption energy to improve the diffusion kinetics toward sodium adsorption. This work contributes to providing a thoughtful understanding of the interface engineering between transition metal dichalcogenides and NC to construct high-performance CDI electrode materials for further industrialization.
Collapse
Affiliation(s)
- Ming Gao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wencui Liang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqian Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew Chem Int Ed Engl 2023; 62:e202302180. [PMID: 37052355 DOI: 10.1002/anie.202302180] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/14/2023]
Abstract
Recent years have seen the emergence of capacitive deionization (CDI) as a promising desalination technique for converting sea and wastewater into potable water, due to its energy efficiency and eco-friendly nature. However, its low salt removal capacity and parasitic reactions have limited its effectiveness. As a result, the development of porous carbon nanomaterials as electrode materials have been explored, while taking into account of material characteristics such as morphology, wettability, high conductivity, chemical robustness, cyclic stability, specific surface area, and ease of production. To tackle the parasitic reaction issue, membrane capacitive deionization (mCDI) was proposed which utilizes ion-exchange membranes coupled to the electrode. Fabrication techniques along with the experimental parameters used to evaluate the desalination performance of different materials are discussed in this review to provide an overview of improvements made for CDI and mCDI desalination purposes.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Najat Maher Aldaqqa
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emad Alhseinat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis & Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Datar SD, Mane R, Jha N. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10696. [PMID: 35289462 DOI: 10.1002/wer.10696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials.
Collapse
Affiliation(s)
- Shreerang D Datar
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Rupali Mane
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Neetu Jha
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
5
|
Wang W, Liu Z, Zhang Z, Li H. Highly Efficient Capacitive Deionization Enabled by NiCo 4MnO 8.5 Electrodes. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100095. [PMID: 35140981 PMCID: PMC8812917 DOI: 10.1002/gch2.202100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The shortage of fresh water resources is one of the major challenges facing this planet. Capacitive deionization (CDI) techniques that are deemed to be highly efficient and require low capital cost have attracted widespread attention in the last few decades. In this work, the cubic ternary metal oxides NiCo4MnO8.5 (Ni-Co-Mn-O) are synthesized by facile hydrothermal method for enhanced symmetrical CDI. Electrochemical measurements illustrate that the Ni-Co-Mn-O possesses low internal resistance and ion diffusion impedance. As a result, the salt removal capacity of the Ni-Co-Mn-O electrode increases from 26.84 to 65.61 mg g-1 by varying the voltage from 0.8 to 1.4 V in 1.0 × 10-2 m NaCl solution, while the charge efficiency stabilizes at ≈80%. After 20 cycles, the capacitance retained is 64.27%, which is due to the irreversibility of Co2+/Co3+ and Mn2+/Mn3+ and the release of Ni3+ from the Ni-Co-Mn-O electrode after long desalination/salination cycles.
Collapse
Affiliation(s)
- Wei Wang
- Ningxia Key Laboratory of Photovoltaic MaterialsNingxia UniversityYinchuanNingxia750021China
| | - Zhenzhen Liu
- Ningxia Key Laboratory of Photovoltaic MaterialsNingxia UniversityYinchuanNingxia750021China
| | - Zehao Zhang
- Ningxia Key Laboratory of Photovoltaic MaterialsNingxia UniversityYinchuanNingxia750021China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic MaterialsNingxia UniversityYinchuanNingxia750021China
| |
Collapse
|
6
|
Shen K, Wei Q, Wang X, Ru Q, Hou X, Wang G, Hui KS, Shen J, Hui KN, Chen F. Electrocatalytic desalination with CO 2 reduction and O 2 evolution. NANOSCALE 2021; 13:12157-12163. [PMID: 34236376 DOI: 10.1039/d1nr02578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multifunctional electrocatalytic desalination is a promising method to increase the production of additional valuable chemicals during the desalination process. In this work, a multifunctional desalination device was demonstrated to effectively desalinate brackish water (15 000 ppm) to 9 ppm while generating formate from captured CO2 at the Bi nanoparticle cathode and releasing oxygen at the Ir/C anode. The salt feed channel is sandwiched between two electrode chambers and separated by ion-exchange membranes. The electrocatalytic process accelerates the transportation of sodium ions and chloride ions in the brine to the cathode and anode chamber, respectively. The fastest salt removal rate to date was obtained, reaching up to 228.41 μg cm-2 min-1 with a removal efficiency of 99.94%. The influences of applied potential and the concentrations of salt feed and electrolyte were investigated in detail. The current research provides a new route towards an electrochemical desalination system.
Collapse
Affiliation(s)
- Kaixiang Shen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ramalingam K, Wei Q, Chen F, Shen K, Liang M, Dai J, Hou X, Ru Q, Babu G, He Q, Ajayan PM. Achieving High-Quality Freshwater from a Self-Sustainable Integrated Solar Redox-Flow Desalination Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100490. [PMID: 34160139 DOI: 10.1002/smll.202100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Solar-assisted electrochemical desalination has offered a new energy-water nexus technology for sustainable development in recent studies. However, only a few reports have demonstrated insufficient photocurrent, a low salt removal rate, and poor stability. In this study, a high-quality freshwater level of 5-10 ppm (from an initial feed of 10 000 ppm), an enhanced salt removal rate (217.8 µg cm-2 min-1 of NaCl), and improved cycling and long-term stability are achieved by integrating dye-sensitized solar cells (DSSCs) and redox-flow desalination (RFD) under light irradiation without additional electrical energy consumption. The DSSC redox electrolyte (I- /I3- ) is circulated between the photoanode (N719/TiO2 ) and intermediate electrode (graphite paper). Two DSSCs in parallel or series connections are directly coupled to the RFD device. Overall, this hybrid system can be used to boost photo electrochemical desalination technology. The energy-water nexus technology will open a new route for dual-role devices with photodesalination functions without energy consumption and solar-to-electricity generation.
Collapse
Affiliation(s)
- Karthick Ramalingam
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Qiang Wei
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Fuming Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Kaixiang Shen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Mengjun Liang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Jinhong Dai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Xianhua Hou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Qiang Ru
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Department Chemical and Biomolecular Engineering, Department of Chemistry, Rice University, Houston, Texas, 77005, USA
| | - Qinyu He
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Department Chemical and Biomolecular Engineering, Department of Chemistry, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|