1
|
Shen X, Li H, Ma T, Jiao Q, Zhao Y, Li H, Feng C. Construction of Heterojunction-Rich Metal Nitrides Porous Nanosheets Electrocatalyst for Alkaline Water/Seawater Splitting at Large Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310535. [PMID: 38420898 DOI: 10.1002/smll.202310535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The exploiting electrocatalysts for water/seawater electrolysis with remarkable activity and outstanding durability at industrial grade current density remains a huge challenge. Herein, CoMoNx and Fe-doped CoMoNx nanosheet arrays are in-situ grown on Ni foam, which possess plentiful holes, multilevel heterostructure, and lavish Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF interfaces. They require low overpotentials of 213 and 296 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline media to achieve current density of 800 mA cm-2, respectively, and both possess low Tafel slopes (51.1 and 49.1 mV dec-1) and undiminished stability over 80 h. Moreover, the coupled Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF electrolyzer requires low voltages of 1.735 V to yield 500 mA cm-2 in alkaline water. Notably, they also exhibit exceptional electrocatalytic properties in alkaline seawater (1.833 V@500 mA cm-2). The experimental studies and theoretical calculations verify that Fe doping does reduce the energy barrier from OH* to O* intermediates during OER process after catalyst reconstruction, and the non-metallic N site from MoN exhibits the lowest theoretical overpotential. The splendid catalytic performance is attributed to the optimized local electron configuration and porous structure. This discovery provides a new design method toward low-cost and excellent catalysts for water/seawater splitting to produce hydrogen.
Collapse
Affiliation(s)
- Xueran Shen
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanjun Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tiantian Ma
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qingze Jiao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Materials and Environment, Beijing Institute of Technology, Jinfeng Road No.6, Xiangzhou District, Zhuhai, 519085, P. R. China
| | - Yun Zhao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hansheng Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Caihong Feng
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
2
|
Wang H, Pei Y, Wang K, Zuo Y, Wei M, Xiong J, Zhang P, Chen Z, Shang N, Zhong D, Pei P. First-Row Transition Metals for Catalyzing Oxygen Redox. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304863. [PMID: 37469215 DOI: 10.1002/smll.202304863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Rechargeable zinc-air batteries are widely recognized as a highly promising technology for energy conversion and storage, offering a cost-effective and viable alternative to commercial lithium-ion batteries due to their unique advantages. However, the practical application and commercialization of zinc-air batteries are hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Recently, extensive research has focused on the potential of first-row transition metals (Mn, Fe, Co, Ni, and Cu) as promising alternatives to noble metals in bifunctional ORR/OER electrocatalysts, leveraging their high-efficiency electrocatalytic activity and excellent durability. This review provides a comprehensive summary of the recent advancements in the mechanisms of ORR/OER, the performance of bifunctional electrocatalysts, and the preparation strategies employed for electrocatalysts based on first-row transition metals in alkaline media for zinc-air batteries. The paper concludes by proposing several challenges and highlighting emerging research trends for the future development of bifunctional electrocatalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Hengwei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Pei
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Keliang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Yayu Zuo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Manhui Wei
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pengfei Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhuo Chen
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuo Shang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Daiyuan Zhong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pucheng Pei
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Biomass-Derived Carbon Materials for the Electrode of Metal-Air Batteries. Int J Mol Sci 2023; 24:ijms24043713. [PMID: 36835125 PMCID: PMC9963816 DOI: 10.3390/ijms24043713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Facing the challenges of energy crisis and global warming, the development of renewable energy has received more and more attention. To offset the discontinuity of renewable energy, such as wind and solar energy, it is urgent to search for an excellent performance energy storage system to match them. Metal-air batteries (typical representative: Li-air battery and Zn-air battery) have broad prospects in the field of energy storage due to their high specific capacity and environmental friendliness. The drawbacks preventing the massive application of metal-air batteries are the poor reaction kinetics and high overpotential during the charging-discharging process, which can be alleviated by the application of an electrochemical catalyst and porous cathode. Biomass, also, as a renewable resource, plays a critical role in the preparation of carbon-based catalysts and porous cathode with excellent performance for metal-air batteries due to the inherent rich heteroatom and pore structure of biomass. In this paper, we have reviewed the latest progress in the creative preparation of porous cathode for the Li-air battery and Zn-air battery from biomass and summarized the effects of various biomass sources precursors on the composition, morphology and structure-activity relationship of cathode. This review will help us understand the relevant applications of biomass carbon in the field of metal-air batteries.
Collapse
|
4
|
Chen Z, Yun S, Wu L, Zhang J, Shi X, Wei W, Liu Y, Zheng R, Han N, Ni BJ. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. NANO-MICRO LETTERS 2022; 15:4. [PMID: 36454315 PMCID: PMC9715911 DOI: 10.1007/s40820-022-00974-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts. By following the circular economy principle, the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy. Currently, diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water electrolysis (OWE). Herein, we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis. The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed, followed by the illustration of current strategies for transforming wastes into electrocatalysts. Then, applications of waste-derived catalysts (i.e., carbon-based catalysts, transitional metal-based catalysts, and carbon-based heterostructure catalysts) in HER, OER, and OWE are reviewed successively. An emphasis is put on correlating the catalysts' structure-performance relationship. Also, challenges and research directions in this booming field are finally highlighted. This review would provide useful insights into the design, synthesis, and applications of waste-derived electrocatalysts, and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Lan Wu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jiaqi Zhang
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Renji Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Louvain, Belgium
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
5
|
Liu J, Zhang M, Zhai L, Wang Y, Han D, Chen P, Qin N, Mi L, Yang L. Co-N heteroatomic interface engineering in peanut Shell-Derived porous carbon for enhanced oxygen reduction reaction. J Colloid Interface Sci 2022; 622:971-977. [PMID: 35561615 DOI: 10.1016/j.jcis.2022.04.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
The development of high-efficiency and low-cost oxygen reduction electrocatalysts have become an urgent need to push fuel cells into practical application. Herein, an effective electrocatalyst Co/NC was successfully constructed, which was derived from abundant peanut shells, obtained by doping with cobalt ions and pyrolyzing in NH3 atmosphere. Due to the abundant Co-N active sites triggered by Co-N heteroatomic interface, the prepared electrocatalysts present excellent oxygen reduction reaction (ORR) performance with more positive half-wave potential (E1/2 = 0.83 V), incremental limiting current density (JL = 5.45 mA cm-2), higher durability and stronger resistance to methanol, which is superior to that of Pt/C (E1/2 = 0.81 V and JL = 5.19 mA cm-2). This work proposes a potential strategy to synthesize efficient ORR electrocatalysts to instead of Pt-based catalysts.
Collapse
Affiliation(s)
- Jing Liu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 45007, PR China
| | - Minglei Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 45007, PR China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 45007, PR China
| | - Yanjie Wang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 45007, PR China
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 45007, PR China
| | - Pengjing Chen
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 45007, PR China
| | - Na Qin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 45007, PR China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 45007, PR China.
| | - Liping Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road 487372, Singapore.
| |
Collapse
|
6
|
Enhancing oxygen evolution reaction activity of Co4N1-x film electrodes through nitrogen deficiency. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Lin X, Liu J, Wu L, Chen L, Qi Y, Qiu Z, Sun S, Dong H, Qiu X, Qin Y. In situ
coupling of lignin‐derived carbon‐encapsulated CoFe‐Co
x
N heterojunction for oxygen evolution reaction. AIChE J 2022. [DOI: 10.1002/aic.17785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xuliang Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Jianglin Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Linjun Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Yi Qi
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Zhongjie Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Shirong Sun
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering Guangdong University of Technology Guangzhou China
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Yanlin Qin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| |
Collapse
|
8
|
Li K, Li J, Yu H, Lin F, Feng G, Jiang M, Yuan D, Yan B, Chen G. Utilizing waste duckweed from phytoremediation to synthesize highly efficient FeN xC catalysts for oxygen reduction reaction electrocatalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153115. [PMID: 35041958 DOI: 10.1016/j.scitotenv.2022.153115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Duckweed is a universal aquatic plant to remove nitrogen source pollutants in the field of phytoremediation. Due to the naturally abundant nitrogen, synthesis of carbon materials from duckweed would be a high-value approach. In oxygen reduction reaction (ORR) of metal-air batteries and fuel cells, non-noble metals and heteroatoms co-doped electrocatalysts with excellent catalytic activity and remarkable stability are promising substitutes for Pt-based catalysts. The first-class ORR performance is determined by appropriate pore structure and active sites, which are strongly associated with the feasible synthesis methods. Herein, a facile one-step synthesis strategy for the transition metals- and nitrogen-codoped carbon (MNxC) based catalysts with hierarchically porous structure was developed. The MNxC (M = Fe, Co, Ni, and Mn) active sites were constructed and FeNxC (D-ZB-Fe) was the best electrocatalyst with excellent ORR performance. Results showed that D-ZB-Fe exhibited an obvious honeycomb porous structure with specific surface area of 1342.91 m2·g-1 and total pore volume of 1.085 cm3·g-1. It also possessed considerable active atoms and sites, where the proportion of pyridine N and graphite N was up to 72.9%. The above feature made for a superior ORR electrocatalytic activity. In specific, the onset and half-wave potential were 0.974 V and 0.857 V vs. RHE (Reversible Hydrogen Electrode), respectively. When compared with performances of commercial Pt/C, the four-electron pathway and relatively low peroxide yield, ca. 5%, were almost equivalent. Furthermore, D-ZB-Fe showed an excellent stability and remarkably methanol tolerance by the durability test. In conclusion, this research provides a new synthesis strategy of electrocatalysts with porous structures and active sites.
Collapse
Affiliation(s)
- Kai Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Jiantao Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China.
| | - Guoqing Feng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Menghan Jiang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Dingkun Yuan
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310000, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| |
Collapse
|
9
|
Cao L, Wang Y, Zhu Q, Fan L, Wu Y, Li Z, Xiong S, Gu F. Co/Co-N/Co-O Rooted on rGO Hybrid BCN Nanotube Arrays as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17249-17258. [PMID: 35403425 DOI: 10.1021/acsami.2c00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing high-performance non-noble metal bifunctional oxygen reduction and evolution reaction electrocatalysts is a critical factor for the commercialization of rechargeable Zn-air batteries. Herein, Co/Co-N/Co-O rooted on reduced graphene oxide (rGO) hybrid boron and nitrogen codoped carbon (BCN) nanotube arrays (BCN/rGO-Co) is prepared by facile low-temperature precross-linking and high-temperature pyrolysis treatment. Benefit from the synergistic effect of its B/N codoping, Co/Co-N/Co-O bifunctional active sites, 3D hybrid porous structure of BCN nanotubes, and highly conductive rGO sheets. The obtained BCN/rGO-Co exhibits superior bifunctional oxygen catalytic activity with a positive ORR half-wave potential (0.85 V) and a low OER potential (1.61 V) at 10 mA cm-2. Additionally, the BCN/rGO-Co-based liquid Zn-air batteries displays a large peak power density of 157 mW cm-2, and a long charge/discharge cycle stability of 200 h, outdoing the commercial Pt/C+Ru/C catalyst.
Collapse
Affiliation(s)
- Lei Cao
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yu Wang
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Qian Zhu
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lanlan Fan
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yu Wu
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zhenhuan Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shixian Xiong
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Gu
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
- Institute for Process Modelling and Optimization, Jiangsu Industrial Technology Research Institute, Suzhou 215123, China
| |
Collapse
|
10
|
Zhao CX, Liu JN, Wang J, Wang C, Guo X, Li XY, Chen X, Song L, Li BQ, Zhang Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. SCIENCE ADVANCES 2022; 8:eabn5091. [PMID: 35294235 PMCID: PMC8926326 DOI: 10.1126/sciadv.abn5091] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 05/20/2023]
Abstract
Rechargeable zinc-air batteries call for high-performance bifunctional oxygen electrocatalysts. Transition metal single-atom catalysts constitute a promising candidate considering their maximum atom efficiency and high intrinsic activity. However, the fabrication of atomically dispersed transition metal sites is highly challenging, creating a need for for new design strategies and synthesis methods. Here, a clicking confinement strategy is proposed to efficiently predisperse transitional metal atoms in a precursor directed by click chemistry and ensure successful construction of abundant single-atom sites. Concretely, cobalt-coordinated porphyrin units are covalently clicked on the substrate for the confinement of the cobalt atoms and affording a Co-N-C electrocatalyst. The Co-N-C electrocatalyst exhibits impressive bifunctional oxygen electrocatalytic performances with an activity indicator ΔE of 0.79 V. This work extends the approach to prepare transition metal single-atom sites for efficient bifunctional oxygen electrocatalysis and inspires the methodology on precise synthesis of catalytic materials.
Collapse
Affiliation(s)
- Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Xin Guo
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Xi-Yao Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Corresponding author. (B.-Q.L.); (Q.Z.)
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Corresponding author. (B.-Q.L.); (Q.Z.)
| |
Collapse
|
11
|
Carbon foam-supported CoN nanoparticles and carbon nanotubes hybrids as bifunctional reduction electrocatalyst. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
12
|
Liu JN, Zhao CX, Ren D, Wang J, Zhang R, Wang SH, Zhao C, Li BQ, Zhang Q. Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109407. [PMID: 34989032 DOI: 10.1002/adma.202109407] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Rechargeable zinc-air batteries afford great potential toward next-generation sustainable energy storage. Nevertheless, the oxygen redox reactions at the air cathode are highly sluggish in kinetics to induce poor energy efficiency and limited cycling lifespan. Air cathodes with asymmetric configurations significantly promote the electrocatalytic efficiency of the loaded electrocatalysts, whereas rational synthetic methodology to effectively fabricate asymmetric air cathodes remains insufficient. Herein, a strategy of asymmetric interface preconstruction is proposed to fabricate asymmetric air cathodes for high-performance rechargeable zinc-air batteries. Concretely, the asymmetric interface is preconstructed by introducing immiscible organic-water diphases within the air cathode, at which the electrocatalysts are in situ formed to achieve an asymmetric configuration. The as-fabricated asymmetric air cathodes realize high working rates of 50 mA cm-2 , long cycling stability of 3400 cycles at 10 mA cm-2 , and over 100 cycles under harsh conditions of 25 mA cm-2 and 25 mAh cm-2 . Moreover, the asymmetric interface preconstruction strategy is universal to many electrocatalytic systems and can be easily scaled up. This work provides an effective strategy toward advanced asymmetric air cathodes with high electrocatalytic efficiency and significantly promotes the performance of rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ding Ren
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shu-Hao Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Yan X, Ha Y, Wu R. Binder-Free Air Electrodes for Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. SMALL METHODS 2021; 5:e2000827. [PMID: 34927848 DOI: 10.1002/smtd.202000827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Indexed: 06/14/2023]
Abstract
Designing an efficient air electrode is of great significance for the performance of rechargeable zinc (Zn)-air batteries. However, the most widely used approach to fabricate an air electrode involves polymeric binders, which may increase the interface resistance and block electrocatalytic active sites, thus deteriorating the performance of the battery. Therefore, binder-free air electrodes have attracted more and more research interests in recent years. This article provides a comprehensive overview of the latest advancements in designing and fabricating binder-free air electrodes for electrically rechargeable Zn-air batteries. Beginning with the fundamentals of Zn-air batteries and recently reported bifunctional active catalysts, self-supported air electrodes for liquid-state and flexible solid-state Zn-air batteries are then discussed in detail. Finally, the conclusion and the challenges faced for binder-free air electrodes in Zn-air batteries are also highlighted.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yuan Ha
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
Zhao CX, Liu JN, Wang J, Ren D, Li BQ, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem Soc Rev 2021; 50:7745-7778. [DOI: 10.1039/d1cs00135c] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bifunctional oxygen reduction and evolution constitute the core processes for sustainable energy storage. The advances on noble-metal-free bifunctional oxygen electrocatalysts are reviewed.
Collapse
Affiliation(s)
- Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing 100081
- China
- School of Materials Science and Engineering
| | - Ding Ren
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing 100081
- China
- School of Materials Science and Engineering
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| |
Collapse
|
15
|
Chen T, Foo C, Edman Tsang SC. Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chem Sci 2020; 12:517-532. [PMID: 34163781 PMCID: PMC8179013 DOI: 10.1039/d0sc06496c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
The addition of foreign element dopants to monometallic nanoparticle catalysts is of great importance in industrial applications. Both substitutional and interstitial doping of pure metallic phases can give profound effects such as altering electronic and transport properties, lattice parameters, phase transitions, and consequently various physicochemical properties. For transition metal catalysts, this often leads to changes in catalytic activity and selectivity. This article provides an overview of the recent developments regarding the catalytic properties and characterisation of such systems. In particular, the structure-activity relationship for a number of important chemical reactions is summarised and the future prospects of this area are also explored.
Collapse
Affiliation(s)
- Tianyi Chen
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Christopher Foo
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| |
Collapse
|