1
|
Panda J, Sahu S, Haider G, Thakur MK, Mosina K, Velický M, Vejpravova J, Sofer Z, Kalbáč M. Polarization-Resolved Position-Sensitive Self-Powered Binary Photodetection in Multilayer Janus CrSBr. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1033-1043. [PMID: 38147583 PMCID: PMC10788859 DOI: 10.1021/acsami.3c13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Recent progress in polarization-resolved photodetection based on low-symmetry 2D materials has formed the basis of cutting-edge optoelectronic devices, including quantum optical communication, 3D image processing, and sensing applications. Here, we report an optical polarization-resolving photodetector (PD) fabricated from multilayer semiconducting CrSBr single crystals with high structural anisotropy. We have demonstrated self-powered photodetection due to the formation of Schottky junctions at the Au-CrSBr interfaces, which also caused the photocurrent to display a position-sensitive and binary nature. The self-biased CrSBr PD showed a photoresponsivity of ∼0.26 mA/W with a detectivity of 3.4 × 108 Jones at 514 nm excitation of fluency (0.42 mW/cm2) under ambient conditions. The optical polarization-induced photoresponse exhibits a large dichroic ratio of 3.4, while the polarization is set along the a- and the b-axes of single-crystalline CrSBr. The PD also showed excellent stability, retaining >95% of the initial photoresponsivity in ambient conditions for more than five months without encapsulation. Thus, we demonstrate CrSBr as a fascinating material for ultralow-powered optical polarization-resolving optoelectronic devices for cutting-edge technology.
Collapse
Affiliation(s)
- Jaganandha Panda
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Satyam Sahu
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
- Department
of Biophysics, Chemical and Macromolecular Physics, Faculty of Mathematics
and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Golam Haider
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Mukesh Kumar Thakur
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Kseniia Mosina
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Matěj Velický
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Jana Vejpravova
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Martin Kalbáč
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
2
|
Liu F, Lin X, Yan Y, Gan X, Cheng Y, Luo X. Self-Powered Programmable van der Waals Photodetectors with Nonvolatile Semifloating Gate. NANO LETTERS 2023; 23:11645-11654. [PMID: 38088857 DOI: 10.1021/acs.nanolett.3c03500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Tunable photovoltaic photodetectors are of significant relevance in the fields of programmable and neuromorphic optoelectronics. However, their widespread adoption is hindered by intricate architectural design and energy consumption challenges. This study employs a nonvolatile MoTe2/hexagonal boron nitride/graphene semifloating photodetector to address these issues. Programed with pulsed gate voltage, the MoTe2 channel can be reconfigured from an n+-n to a p-n homojunction and the photocurrent transition changes from negative to positive values. Scanning photocurrent mapping reveals that the negative and positive photocurrents are attributed to Schottky junction and p-n homojunction, respectively. In the p-n configuration, the device demonstrates self-driven, linear, rapid response (∼3 ms), and broadband sensitivity (from 405 to 1500 nm) for photodetection, with typical performances of responsivity at ∼0.5 A/W and detectivity ∼1.6 × 1012 Jones under 635 nm illumination. These outstanding photodetection capabilities emphasize the potential of the semifloating photodetector as a pioneering approach for advancing logical and nonvolatile optoelectronics.
Collapse
Affiliation(s)
- Fan Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710129, China
| | - Xi Lin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710129, China
| | - Yuting Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710129, China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoguang Luo
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
3
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Tang X, Wang S, Liang Y, Bai D, Xu J, Wang Y, Chen C, Liu X, Wu S, Wen Y, Jiang D, Zhang Z. High-performance, self-powered flexible MoS 2 photodetectors with asymmetric van der Waals gaps. Phys Chem Chem Phys 2022; 24:7323-7330. [PMID: 35262113 DOI: 10.1039/d1cp05602f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With an urgent demand for low-energy-consumption and wearable devices, it is desirable to find an easy, effective, and low-cost method to fabricate self-powered flexible photodetectors with simple configurations and high-performance. Self-powered photodetectors are normally fabricated based on either two different materials or the same material in contact with two different metal electrodes. Here, a flexible MoS2 photodetector with the same Au electrodes was fabricated on a polyethylene terephthalate (PET) substrate which exhibits self-powered properties. To our knowledge, its configuration is the simplest, and the fabrication process is easy to implement. At a bias of 0 V, the photodetector exhibits a high responsivity of 431 mA W-1, a short response/recovery time of 40 ms/40 ms, and excellent flexibility. Compared with those at a bias of 2 V, a dark current is sufficiently suppressed, and the response/recovery speed is significantly improved. It is found that the driving force of the self-powered photodetector is provided by the asymmetric Schottky barriers originating from the spontaneous generation of two van der Waals gaps with different widths. The asymmetric barriers exist stably at the interfaces between the 2D material and Au electrodes as further observed for ReS2 or GaSe flakes, which show the generality of asymmetric Schottky barriers between the 2D material and Au electrodes. The discovery here thus gives a new way to generate asymmetric Schottky barriers and develop high-performance self-powered photodetectors.
Collapse
Affiliation(s)
- Xiaoqiu Tang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Shuai Wang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Yao Liang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Dongwei Bai
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Jiyuan Xu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Yingying Wang
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Chaoyu Chen
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Xiang Liu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Sumei Wu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Yang Wen
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Dayong Jiang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Zhihua Zhang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| |
Collapse
|
5
|
Shao J, Zhang Y, Huang Z, Wang L, Liu T, Zhang N, Hu H. High-performance unbiased Ge metal-semiconductor-metal photodetector covered with asymmetric HfSe 2 contact geometries. APPLIED OPTICS 2022; 61:1778-1783. [PMID: 35297858 DOI: 10.1364/ao.450947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
A Ge metal-semiconductor-metal photodetector covered with asymmetric HfSe2 contact geometries has been proposed to realize high-performance unbiased photodetection at 1550 nm. At -1 V bias, the responsivity of this device shows a 71% improvement compared to the device without HfSe2. Moreover, the responsivity and detectivity of this device at zero bias can reach to 71.2 mA/W and 3.27×1010 Jones, respectively. Furthermore, the fall time of this device is 2.2 µs and 53% shorter than the device without HfSe2. This work provides a feasible way to develop unbiased Ge-based photodetectors in the near-IR communications band.
Collapse
|
6
|
Sett S, Parappurath A, Gill NK, Chauhan N, Ghosh A. Engineering sensitivity and spectral range of photodetection in van der Waals materials and hybrids. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac46b9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Exploration of van der Waals heterostructures in the field of optoelectronics has produced photodetectors with very high bandwidth as well as ultra-high sensitivity. Appropriate engineering of these heterostructures allows us to exploit multiple light-to-electricity conversion mechanisms, ranging from photovoltaic, photoconductive to photogating processes. These mechanisms manifest in different sensitivity and speed of photoresponse. In addition, integrating graphene-based hybrid structures with photonic platforms provides a high gain-bandwidth product, with bandwidths ≫1 GHz. In this review, we discuss the progression in the field of photodetection in 2D hybrids. We emphasize the physical mechanisms at play in diverse architectures and discuss the origin of enhanced photoresponse in hybrids. Recent developments in 2D photodetectors based on room temperature detection, photon-counting ability, integration with Si and other pressing issues, that need to be addressed for these materials to be integrated with industrial standards have been discussed.
Collapse
|
7
|
Yao J, Yang G. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103036. [PMID: 34719873 PMCID: PMC8728821 DOI: 10.1002/advs.202103036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Indexed: 05/12/2023]
Abstract
2D layered materials (2DLMs) have come under the limelight of scientific and engineering research and broke new ground across a broad range of disciplines in the past decade. Nevertheless, the members of stoichiometric 2DLMs are relatively limited. This renders them incompetent to fulfill the multitudinous scenarios across the breadth of electronic and optoelectronic applications since the characteristics exhibited by a specific material are relatively monotonous and limited. Inspiringly, alloying of 2DLMs can markedly broaden the 2D family through composition modulation and it has ushered a whole new research domain: 2DLM alloy nano-electronics and nano-optoelectronics. This review begins with a comprehensive survey on synthetic technologies for the production of 2DLM alloys, which include chemical vapor transport, chemical vapor deposition, pulsed-laser deposition, and molecular beam epitaxy, spanning their development, as well as, advantages and disadvantages. Then, the up-to-date advances of 2DLM alloys in electronic devices are summarized. Subsequently, the up-to-date advances of 2DLM alloys in optoelectronic devices are summarized. In the end, the ongoing challenges of this emerging field are highlighted and the future opportunities are envisioned, which aim to navigate the coming exploration and fully exert the pivotal role of 2DLMs toward the next generation of electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
8
|
Wu J, Wei M, Mu J, Ma H, Zhong C, Ye Y, Sun C, Tang B, Wang L, Li J, Xu X, Liu B, Li L, Lin H. High-Performance Waveguide-Integrated Bi 2O 2Se Photodetector for Si Photonic Integrated Circuits. ACS NANO 2021; 15:15982-15991. [PMID: 34652907 DOI: 10.1021/acsnano.1c04359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the excellent electrical and optical properties and their integration capability without lattice matching requirements, low-dimensional materials have received increasing attention in silicon photonic circuits. Bi2O2Se with high carrier mobility, narrow bandgap, and good air stability is very promising for high-performance near-infrared photodetectors. Here, the chemical vapor deposition method is applied to grow Bi2O2Se onto mica, and our developed polycarbonate/polydimethylsiloxane-assisted transfer method enables the clean and intact transfer of Bi2O2Se on top of a silicon waveguide. We demonstrated the Bi2O2Se/Si waveguide integrated photodetector with a small dark current of 72.9 nA, high responsivity of 3.5 A·W-1, fast rise/decay times of 22/78 ns, and low noise-equivalent power of 15.1 pW·Hz-0.5 at an applied voltage of 2 V in the O-band for transverse electric modes. Additionally, a microring resonator is designed for enhancing light-matter interaction, resulting in a wavelength-sensitive photodetector with reduced dark current (15.3 nA at 2 V) and more than a 3-fold enhancement in responsivity at the resonance wavelength, which is suitable for spectrally resolved applications. These results promote the integration of Bi2O2Se with a silicon photonic platform and are expected to accelerate the future use of integrated photodetectors in spectroscopy, sensing, and communication applications.
Collapse
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Maoliang Wei
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianglong Mu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chuyu Zhong
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuting Ye
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Chunlei Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Bo Tang
- Institute of Microelectronics, Chinese Academic Society, Beijing 100029, China
| | - Lichun Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junying Li
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaomin Xu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Yang C, Wang G, Liu M, Yao F, Li H. Mechanism, Material, Design, and Implementation Principle of Two-Dimensional Material Photodetectors. NANOMATERIALS 2021; 11:nano11102688. [PMID: 34685129 PMCID: PMC8537528 DOI: 10.3390/nano11102688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Two-dimensional (2D) materials may play an important role in future photodetectors due to their natural atom-thin body thickness, unique quantum confinement, and excellent electronic and photoelectric properties. Semimetallic graphene, semiconductor black phosphorus, and transition metal dichalcogenides possess flexible and adjustable bandgaps, which correspond to a wide interaction spectrum ranging from ultraviolet to terahertz. Nevertheless, their absorbance is relatively low, and it is difficult for a single material to cover a wide spectrum. Therefore, the combination of phototransistors based on 2D hybrid structures with other material platforms, such as quantum dots, organic materials, or plasma nanostructures, exhibit ultra-sensitive and broadband optical detection capabilities that cannot be ascribed to the individual constituents of the assembly. This article provides a comprehensive and systematic review of the recent research progress of 2D material photodetectors. First, the fundamental detection mechanism and key metrics of the 2D material photodetectors are introduced. Then, the latest developments in 2D material photodetectors are reviewed based on the strategies of photocurrent enhancement. Finally, a design and implementation principle for high-performance 2D material photodetectors is provided, together with the current challenges and future outlooks.
Collapse
Affiliation(s)
- Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
- Correspondence: (C.Y.); (H.L.)
| | - Guangcan Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
| | - Maomao Liu
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
| | - Fei Yao
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
| | - Huamin Li
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
- Correspondence: (C.Y.); (H.L.)
| |
Collapse
|
10
|
Han L, Yang M, Wen P, Gao W, Huo N, Li J. A high performance self-powered photodetector based on a 1D Te-2D WS 2 mixed-dimensional heterostructure. NANOSCALE ADVANCES 2021; 3:2657-2665. [PMID: 36134149 PMCID: PMC9419060 DOI: 10.1039/d1na00073j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/14/2021] [Indexed: 05/21/2023]
Abstract
One-dimensional (1D)-two-dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of an atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. Herein, a mixed-dimensional vertical heterostructure is constructed by transferring mechanically exfoliated 2D WS2 nanosheets on epitaxially grown 1D tellurium (Te) microwires. According to the theoretical type-II band alignment, the device exhibits a photovoltaic effect and serves as an excellent self-powered photodetector with a maximum open-circuit voltage (V oc) up to ∼0.2 V. Upon 635 nm light illumination, the photoresponsivity, external quantum efficiency and detectivity of the self-powered photodetector (SPPD) are calculated to be 471 mA W-1, 91% and 1.24 × 1012 Jones, respectively. Moreover, the dark current of the SPPD is highly suppressed to the sub-pA level due to the large lateral built-in electric field, which leads to a high I light/I dark ratio of 104 with a rise time of 25 ms and decay time of 14.7 ms. The abovementioned properties can be further enhanced under a negative bias of -2 V. In brief, the 1D Te-2D WS2 mixed-dimensional heterostructures have great application potential in high performance photodetectors and photovoltaics.
Collapse
Affiliation(s)
- Lixiang Han
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Mengmeng Yang
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Peiting Wen
- Institute of Semiconductors, South China Normal University Guangzhou 510631 P.R. China
| | - Wei Gao
- Institute of Semiconductors, South China Normal University Guangzhou 510631 P.R. China
| | - Nengjie Huo
- Institute of Semiconductors, South China Normal University Guangzhou 510631 P.R. China
| | - Jingbo Li
- Institute of Semiconductors, South China Normal University Guangzhou 510631 P.R. China
| |
Collapse
|
11
|
Ahmad W, Gong Y, Abbas G, Khan K, Khan M, Ali G, Shuja A, Tareen AK, Khan Q, Li D. Evolution of low-dimensional material-based field-effect transistors. NANOSCALE 2021; 13:5162-5186. [PMID: 33666628 DOI: 10.1039/d0nr07548e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-effect transistors (FETs) have tremendous applications in the electronics industry due to their outstanding features such as small size, easy fabrication, compatibility with integrated electronics, high sensitivity, rapid detection and easy measuring procedures. However, to meet the increasing demand of the electronics industry, efficient FETs with controlled short channel effects, enhanced surface stability, reduced size, and superior performances based on low-dimensional materials are desirable. In this review, we present the developmental roadmap of FETs from conventional to miniaturized devices and highlight their prospective applications in the field of optoelectronic devices. Initially, a detailed study of the general importance of bulk and low-dimensional materials is presented. Then, recent advances in low-dimensional material heterostructures, classification of FETs, and the applications of low-dimensional materials in field-effect transistors and photodetectors are presented in detail. In addition, we also describe current issues in low-dimensional material-based FETs and propose potential approaches to address these issues, which are crucial for developing electronic and optoelectronic devices. This review will provide guidelines for low-dimensional material-based FETs with high performance and advanced applications in the future.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Youning Gong
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Maaz Khan
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ghafar Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ahmed Shuja
- Centre for Advanced Electronics & Photovoltaic Engineering, International Islamic University, Islamabad, Pakistan
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Qasim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Delong Li
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
12
|
Li D, Wu W, Han S, Liu X, Peng Y, Li X, Li L, Hong M, Luo J. A reduced-dimensional polar hybrid perovskite for self-powered broad-spectrum photodetection. Chem Sci 2021; 12:3050-3054. [PMID: 34164074 PMCID: PMC8179401 DOI: 10.1039/d0sc06112c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022] Open
Abstract
Polar hybrid perovskites have been explored for self-powered photodetection benefitting from prominent transport of photo-induced carriers and the bulk photovoltaic effect (BPVE). However, these self-powered photodetection ranges are relatively narrow depending on their intrinsic wide bandgaps (>2.08 eV), and the realization of broad-spectrum self-powered photodetection is still a difficult task. Herein, we successfully obtained a polar multilayered perovskite, (I-BA)2(MA)2Pb3I10 (IMP, MA+ = methylammonium and I-BA+ = 4-iodobutylammonium), via rational dimension reduction of CH3NH3PbI3. It features the narrowest bandgap of 1.71 eV in a BPV material. As a consequence, the integration of narrow bandgap and BPVE causes the self-powered photodetection to extend to 724 nm for IMP, and a repeatable photovoltaic current reaching 1.0 μA cm-2 is acquired with a high "on/off" ratio of ∼103 and photodetectivity (∼109 Jones) at zero bias. This innovative research provides a foothold for adjusting the physical properties of hybrid perovskites and will expand their potential for self-powered broad-spectrum detection.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Wentao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xiaoqi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Lin Z, Wang C, Chai Y. Emerging Group-VI Elemental 2D Materials: Preparations, Properties, and Device Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003319. [PMID: 32797721 DOI: 10.1002/smll.202003319] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/02/2020] [Indexed: 05/17/2023]
Abstract
Due to the ultrathin thickness and dangling-bond-free surface, 2D materials have been regarded as promising candidates for future nanoelectronics. In recent years, group-VI elemental 2D materials have been rediscovered and found superior in electrical properties (e.g., high carrier mobility, high photoconductivity, and thermoelectric response). The outstanding semiconducting properties of group-VI elemental 2D materials enable device applications including high-performance field-effect transistors and optoelectronic devices. The excellent environmental stability also facilitates fundamental studies and practical applications of group-VI elemental 2D materials. This Review first focuses on the crystal structures of group-VI elemental 2D materials. Afterward, preparation methods for nanostructures of group-VI materials are introduced with comprehensive studies. A brief Review of the electronic structures is then presented with an understanding of the electrical properties. This Review also contains the device applications of group-VI elemental 2D materials, emphasizing transistors, photodetectors, and other appealing applications. Finally, this Review provides an outlook for the development of group-VI elemental 2D materials, highlighting the challenges and opportunities in fundamental studies and technological applications.
Collapse
Affiliation(s)
- Ziyuan Lin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Cong Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|