1
|
Yan Z, Yu T, Wu X, Deng M, Wei P, Su N, Ding Y, Xia D, Zhang Y, Zhang L, Chen T. Nanoemulsion based lipid nanoparticles for effective demethylcantharidin delivery to cure liver cancer. Chem Biol Drug Des 2024; 104:e14580. [PMID: 39031936 DOI: 10.1111/cbdd.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Demethylcantharidin (DEM) is a widely used antitumor drug; however, its poor tumor targeting and serious organotoxicity limit its application. The aim of this study was to develop a new drug delivery system for efficient delivery of DEM. Nanoemulsion based lipid nanoparticles containing demethylcantharidin (DNLNs) were prepared by loading nanoemulsions into lipid nanoparticles. The cells proliferation, apoptosis, cycle, and uptake were investigated by Cell counting kit-8 (CCK-8), flow cytometry, and in situ fluorescence assays, respectively. Then, we established the H22 tumor-bearing mouse model to evaluate the antitumor efficacy of DNLNs and further studied its organ toxicity and distribution. DNLNs significantly inhibited the proliferation and promoted apoptosis of H22 cells, and H22 cells could take up more DNLNs. Compared with DEM, DNLNs had certain tumor-targeting properties, and the tumor inhibition rate increased by 23.24%. Moreover, DNLNs can increase white blood cell count and reduce organ toxicity. This study paves the way for nanoemulsion-based lipid nanoparticle (NLNs)-efficient DEM delivery to treat liver cancer.
Collapse
Affiliation(s)
- Zijun Yan
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Ting Yu
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China
| | - Xiaoping Wu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Mengyue Deng
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Panpan Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Ning Su
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China
| | - Yuzhen Ding
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Die Xia
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Yuehui Zhang
- Department of Neurology, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Liangming Zhang
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| |
Collapse
|
2
|
Zhang P, Xiao Y, Sun X, Lin X, Koo S, Yaremenko AV, Qin D, Kong N, Farokhzad OC, Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. MED 2023; 4:147-167. [PMID: 36549297 DOI: 10.1016/j.medj.2022.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
With the integration of nanotechnology into the medical field at large, great strides have been made in the development of nanomedicines for tackling different diseases, including cancers. To date, various cancer nanomedicines have demonstrated success in preclinical studies, improving therapeutic outcomes, prolonging survival, and/or decreasing side effects. However, the translation from bench to bedside remains challenging. While a number of nanomedicines have entered clinical trials, only a few have been approved for clinical applications. In this review, we highlight the most recent progress in cancer nanomedicine, discuss current clinical advances and challenges for the translation of cancer nanomedicines, and provide our viewpoints on accelerating clinical translation. We expect this review to benefit the future development of cancer nanotherapeutics specifically from the clinical perspective.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, China
| | - Yufen Xiao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Sun
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duotian Qin
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Seer, Inc., Redwood City, CA 94065, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Self-assembled asparaginase-based nanoparticles with enhanced anti-cancer efficacy and anticoagulant activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Yan J, Wang Y, Song X, Yan X, Zhao Y, Yu L, He Z. The Advancement of Gas-Generating Nanoplatforms in Biomedical Fields: Current Frontiers and Future Perspectives. SMALL METHODS 2022; 6:e2200139. [PMID: 35587774 DOI: 10.1002/smtd.202200139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Diverse gases (NO, CO, H2 S, H2 , etc.) have been widely applied in the medical intervention of various diseases, including cancer, cardiovascular disease, ischemia-reperfusion injury, bacterial infection, etc., attributing to their inherent biomedical activities. Although many gases have many biomedical activities, their clinical use is still limited due to the rapid and free diffusion behavior of these gases molecules, which may cause potential side effects and/or ineffective treatment. Gas-generating nanoplatforms (GGNs) are effective strategies to address the aforementioned challenges of gas therapy by preventing gas production or release at nonspecific sites, enhancing GGNs accumulation at targeted sites, and controlling gas release in response to exogenous (UV, NIR, US, etc.) or endogenous (H2 O2 , GSH, pH, etc.) stimuli at the lesion site, further maintaining gas concentration within the effective range and achieving the purpose of disease treatment. This review comprehensively summarizes the advancements of "state-of-the-art" GGNs in the recent three years, with emphasis on the composition, structure, preparation process, and gas release mechanism of the nanocarriers. Furthermore, the therapeutic effects and limitations of GGNs in preclinical studies using cell/animal models are discussed. Overall, this review enlightens the further development of this field and promotes the clinical transformation of gas therapy.
Collapse
Affiliation(s)
- Jiahui Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yi Zhao
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
5
|
Chen Y, Zhang M, Zhao H, Liu Y, Wang T, Lei T, Xiang X, Lu L, Yuan Z, Xu J, Zhang J. Oral supramolecular nanovectors for dual natural medicine codelivery to prevent gastric mucosal lesion. NANOSCALE 2022; 14:8967-8977. [PMID: 35670481 DOI: 10.1039/d2nr01469f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oral administration of a single formulation loaded with more than one natural medicine to treat chronic diseases has advantages such as convenience, effectiveness, and economy. Here, using biomaterials approved by the drug administration, we fabricated supramolecular nanovectors containing dual natural medicines to prevent gastric mucosal lesions. Nanovectors exhibited superior intestinal absorption and bioavailability, which might be due to their high dispersion, good muco-adhesiveness, blood-lymph circulation transport, lipid sensing, and protective effects. Molecular docking results clarified the possible mechanisms in aspects of efflux pump (p-glycoprotein and multidrug resistance protein 1) inhibition effects, metabolic enzyme (cytochrome P450 3A4/1A2) blocking effects, serum albumin deposit effects, and dual drug interaction effects. Nanovectors decreased ethanol-induced gastric mucosal lesions by lowering the gastric ulcer index, preventing oxidative damage, decreasing interleukin-6, tumor necrosis factor-α and malondialdehyde, increasing glutathione, superoxide dismutase, and prostaglandin E2 levels. The interactions of inhibitor of nuclear factor-κB or κB kinase-related proteins and dual drugs or nanovector components were simulated computationally to provide an understanding of the gastro-protective action mechanism. In all, industrializable supramolecular nanovectors could effectively co-deliver dual natural medicines via the oral route by improving the pharmacokinetic behavior and exerting protective efficacy of the gastric mucosa by decreasing the oxidative stress and inflammatory level.
Collapse
Affiliation(s)
- Yun Chen
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Min Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hua Zhao
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yingju Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Lei
- Ningbo Institude for Drug Control, Ningbo 315100, China
| | - Xiaoyan Xiang
- Department of Pharmacy, People's Hospital of Kaizhou District, Chongqing 405400, China
| | - Luyang Lu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Ziyi Yuan
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jingxin Xu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Wu Y, Wan S, Chen Y, Fan J, Li Y, Wang T, Yuan Z, Yang Q, Qin H, Xu J, Zhang J. Biomimetic lipidic nanovectors for effective asparaginase supramolecule delivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102518. [PMID: 35032628 DOI: 10.1016/j.nano.2022.102518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
Effectiveness of enzyme therapy is limited by enzyme drawbacks such as short half-life, low bioavailability and high immunogenicity. We loaded asparaginase (Aase) into hydroxypropyl- or sulfonbutylether-beta cyclodextrin to form supramolecular amphiphilic molecules by self-assembly followed by entrapment inside the cores of two biomimetic lipidic nanovectors (AS-XLNs). Supramolecular structure was simulated by molecular docking. AS-XLNs maintained superior activity through isolating Aase from external environment due to docking with cyclodextrin and coating with biomimetic membrane. Fluorescent probes and computational simulations were used to reveal possible interactions between serum albumin/trypsin and Aase/nanovector membrane components which were partly responsible for enhanced bioavailability and bioactivity of AS-XLNs compared to Aase. AS-XLNs significantly increased cytotoxicity against pulmonary tumor cells due to synergistic effects of Aase and nanovector membrane components (killing tumor cells through apoptosis induced by asparagine depletion and autophagy inhibition or via targets such as vascular endothelial growth factor A, alpha-amylase, p-selectin or androgen receptor).
Collapse
Affiliation(s)
- Yan Wu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Shengli Wan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yun Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jingchuan Fan
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yao Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Ziyi Yuan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qiang Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Hong Qin
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jingxin Xu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Yang J, Fang C, Liu H, Wu M, Tao S, Tan Q, Chen Y, Wang T, Li K, Zhong C, Zhang J. Ternary supramolecular nanocomplexes for superior anticancer efficacy of natural medicines. NANOSCALE 2021; 13:15085-15099. [PMID: 34533154 DOI: 10.1039/d1nr02791c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The discovery of effective anticancer drug delivery systems and elucidation of the mechanism are enormous challenges. Using two drug administration-approved biomaterials, we constructed a natural medicine (NM)-loaded ternary supramolecular nanocomplex (TSN) suitable for large-scale production. The TSN has a better effect against cancer cells/stem cells than NM with differentially upregulated (27 versus 59) and downregulated (165 versus 66) proteins, respectively. Treatment with the TSN induced apoptosis and G2/M arrest, inhibited cell proliferation, metastasis and invasion, reduced colony/sphere formation, and decreased the frequency of side population cells and CD133+CD44+ABCG2+ cells. These results were revealed by multiple analyses (proteomic analysis, transwell migration and colony/sphere formation assays, biomarker profiling, etc.). We first reported the proteomic analysis of small lung cancer cells responding to a drug or its nanovesicles. We first conducted a proteomic evaluation of tumor cells responding to a drug supramolecular nanosystem. The supramolecular conformation of the TSN and the interactions of the TSN with albumin were verified by molecular docking experiments. The dominant binding forces in the TSN complexation process were electrostatic interactions, van der Waalsinteractions and bond stretching. The TSN binds to albumin more readily than NM does. The TSN has good in situ absorptive and in vitro/vivo kinetic properties. The relative bioavailability of the TSN to EA was 458.39%. The NM-loaded TSN is a supramolecular vesicle that can be produced at an industrial scale for efficient cancer therapy.
Collapse
Affiliation(s)
- Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Chunshu Fang
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| | - Hongming Liu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Shaolin Tao
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| | - Yun Chen
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400036, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Huang Y, Wang T, Tan Q, He D, Wu M, Fan J, Yang J, Zhong C, Li K, Zhang J. Smart Stimuli-Responsive and Mitochondria Targeting Delivery in Cancer Therapy. Int J Nanomedicine 2021; 16:4117-4146. [PMID: 34163163 PMCID: PMC8214531 DOI: 10.2147/ijn.s315368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Dysfunction in the mitochondria (Mc) contributes to tumor progression. It is a major challenge to deliver therapeutic agents specifically to the Mc for precise treatment. Smart drug delivery systems are based on stimuli-responsiveness and active targeting. Here, we give a whole list of documented pathways to achieve smart stimuli-responsive (St-) and Mc-targeted DDSs (St-Mc-DDSs) by combining St and Mc targeting strategies. We present the formulations, targeting characteristics of St-Mc-DDSs and clarify their anti-cancer mechanisms as well as improvement in efficacy and safety. St-Mc-DDSs usually not only have Mc-targeting groups, molecules (lipophilic cations, peptides, and aptamers) or materials but also sense the surrounding environment and correspondingly respond to internal biostimulators such as pH, redox changes, enzyme and glucose, and/or externally applied triggers such as light, magnet, temperature and ultrasound. St-Mc-DDSs exquisitely control the action site, increase therapeutic efficacy and decrease side effects of the drug. We summarize the clinical research progress and propose suggestions for follow-up research. St-Mc-DDSs may be an innovative and sensitive precision medicine for cancer treatment.
Collapse
Affiliation(s)
- Yongjia Huang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, People's Republic of China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingchuan Fan
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
9
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
10
|
Wang T, Qi D, Hu X, Li N, Zhang X, Liu H, Zhong C, Zhang J. A novel evodiamine amino derivative as a PI3K/AKT signaling pathway modulator that induces apoptosis in small cell lung cancer cells. Eur J Pharmacol 2021; 906:174215. [PMID: 34081902 DOI: 10.1016/j.ejphar.2021.174215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Evodiamine (EVO) was derivatized to a C10-amino derivative (EVA) using a two-step method suitable for industrializing production. This method has advantages such as a short reaction time, high yield, few byproducts and simple purification. The AUC and Cmax values of EVA were 7.02- and 4.62-fold, while the Tmax and Cl values were one-half and one-eighth that of EVO, respectively. EVA markedly improved the bioavailability, which might be ascribed to the serum albumin deposit effect. EVA was bound to albumin in the same hydrophobic pocket as EVO, but one more hydrogen bond was formed between Asp323 and the amino group at the C10 position. The amino derivative of natural alkaloids showed a substantial increase in antitumor activity on small cell lung cancer (SCLC) cells. The role of the PI3K/AKT signaling pathway in alkaloid/derivative-induced apoptosis in tumor cells was thoroughly described. p-AKT, its downstream effectors Bcl-2, Bax, caspase-3 and its upstream regulator PTEN were regulated by EVA. The interaction between EVO/EVA and the upstream protein PI3K p110 was first investigated with molecular docking. The apoptosis induced by EVA was abrogated after the PI3K/AKT signaling pathway was reactivated by IGF-1. The interaction between EVO/EVA and P-gp was also first studied using docking method. Their binding forces were weak. But EVA might reduce much expression of P-gp than EVO, and ultimately led to reduction of EVA efflux. Our study provides novel insights into a feasible and productive amino derivative of natural alkaloids for SCLC therapy.
Collapse
Affiliation(s)
- Tingting Wang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China; Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 401331, China.
| | - Di Qi
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, PLA, Chongqing 400042, China.
| | - Xueyuan Hu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Na Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Hongming Liu
- Department of Pharmacy, Nanchuan People's Hospital, Chongqing Medical University, Chongqing 408400, China.
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
He X, Feng J, Yan S, Zhang Y, Zhong C, Liu Y, Shi D, Abagyan R, Xiang T, Zhang J. Biomimetic microbioreactor-supramolecular nanovesicles improve enzyme therapy of hepatic cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102311. [PMID: 33011392 DOI: 10.1016/j.nano.2020.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/05/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022]
Abstract
A novel biomimetic nanovesicle-loaded supramolecular enzyme-based therapeutics has been developed. Here, using a biomimetic lipid-D-α-tocopherol polyethylene glycol succinate (TPGS) hybrid semi-permeable membrane, cyclodextrin supramolecular docking, metal-ion-aided coordination complexing, we combined multiple functional motifs into a single biomimetic microbioreactor-supramolecular nanovesicle (MiSuNv) that allowed effective transport of arginine deiminase (ADI) to hepatic tumor cells to enhance arginine depletion. We compared two intercalated enzyme-carrying supermolecular motifs mainly comprising of 2-hydroxypropyl-β-cyclodextrin and sulfobutyl-ether-β-cyclodextrin, the only two cyclodextrin derivatives approved for injection by the United States Food and Drug Administration. The ADI-specific antitumor effects were enhanced by TPGS (one constituent of MiSuNv, having synergistic antitumor effects), as ADI was separated from adverse external environment by a semi-permeable membrane and sequestered in a favorable internal microenvironment with an optimal pH and metal-ion combination. ADI@MiSuNv contributed to cell cycle arrest, apoptosis and autophagy through the enhanced efficacy of enzyme treatment against Hep3B xenograft tumors in rats.
Collapse
Affiliation(s)
- Xiaoqian He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Feng
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Shenglei Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Yang L, Zhang Y, Xie J, Zhong C, He D, Wang T, Li K, Li Y, Shi D, Abagyan R, Yang L, Zhang J. Biomimetic polysaccharide-cloaked lipidic nanovesicles/microassemblies for improving the enzymatic activity and prolonging the action time for hyperuricemia treatment. NANOSCALE 2020; 12:15222-15235. [PMID: 32639489 DOI: 10.1039/d0nr02651d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The improvement and maintenance of enzymatic activities represent major challenges. However, to address these we developed novel biomimetic polysaccharide hyaluronan (Hn)-cloaked lipidic nanovesicles (BHLN) and microassemblies (BHLNM) as enzyme carriers that function by entrapping enzymes in the core or by tethering them to the inner/outer surfaces via covalent interactions. The effectiveness of these enzyme carriers was demonstrated through an evaluation of the enzymatic activity and anti-hyperuricemia bioactivity of urate oxidase (also called uricase, Uase). We showed that Uase was effectively loaded within the BHLN/BHLNM (UHLN/UHLNM) and maintained good enzymatic bioactivity through a range of effects, including isolation from the external environment due to the vesicle-carrying (shielding effect), avoidance of recognition by the reticuloendothelial system due to Hn-cloaking (long-term effect), production of beneficial conformational changes (allosteric effect) due to a favorable internal microenvironment of construction and vesicle loading, and stabilization due to the reversible conjugation of Uase or vesicle and serum albumin (deposit effect). UHLN/UHLNM had significantly increased bioavailability (∼533% and ∼331% compared to Uase) and demonstrated greatly improved efficacy, whereby the time required for UHLN/UHLNM to lower the plasma uric acid concentration to a normal level was much shorter than that for free Uase. The interactions of the therapeutic enzyme (Uase), biomimetic membrane components (Hn and phospholipid), and serum albumin were investigated with a fluorescent probe and computational simulations to help understand the superior properties of UHLN/UHLNM.
Collapse
Affiliation(s)
- Lan Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jiangchuan Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 401331, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Yao Li
- Division of Infectious Disease, Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lin Yang
- Department of Pharmacology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Gu J, Huang Y, Yan Z, He D, Zhang Y, Xu J, Li Y, Xie X, Xie J, Shi D, Abagyan R, Zhang J, Tan Q. Biomimetic Membrane-Structured Nanovesicles Carrying a Supramolecular Enzyme to Cure Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31112-31123. [PMID: 32544316 DOI: 10.1021/acsami.0c06207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Platforms for enzyme delivery must simultaneously have plasma stability, high catalytic activity, and low/no immunogenicity of the enzyme. Here, we designed a novel biomimetic membrane-structured nanovesicle (BNV) to efficiently carry supramolecular enzymes to meet the above requirements. We complexed l-asparaginase (Aase) with hydroxypropyl-β-cyclodextrin (HPCD) to form a supramolecular amphiphile (AS) by self-assembly via noncovalent reversible interactions. We then used the first synthesized polyethylene glycol (PEG 2 kDa)-decorated hyaluronan (12 kDa) and HPCD to self-assemble a semipermeable biomimetic membrane-structured nanovesicle (BNV) together with AS loading. As compared to native Aase, AS@BNV exhibited superior catalytic activity preservation, improved catalytic activity, better pharmacokinetics in rats, enhanced cytotoxic effects, increased antitumor efficacy, and decreased side effects. The underlying mechanisms, such as the autophagy inhibition action against tumor cells, protein-protein docking of the interaction between Aase-serum albumin, and decreased hepatic enzymatic activity, were investigated. This approach paves the way for new types of powerful biomimetic-, supramolecular-, and nanocarrier-based enzymatic therapies.
Collapse
Affiliation(s)
- Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| | - Yongjia Huang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zijun Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jingyu Xu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Yao Li
- Division of Infectious Disease, Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Xuemei Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jiaxi Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| |
Collapse
|