1
|
Guo Q, Wang C, Shang J, Yang Y, Xie C, Luo Y, Rong M, Pei Y, Gao Y, Zheng Z. A Freestanding, Dissolution- and Diffusion-Limiting, Flexible Sulfur Electrode Enables High Specific Capacity at High Mass Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400041. [PMID: 38469733 DOI: 10.1002/adma.202400041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Indexed: 03/13/2024]
Abstract
The acquisition of stable and high-areal-capacity S cathodes over 10 mA h cm-2 is a critical and indispensable step to realize the high energy density configuration. However, increasing the areal capacity of S cathodes often deteriorates the specific capacity and stability due to the aggravated dissolution of S and diffusion of solvable polysulfides in the thick electrode. Herein, the design of a freestanding composite cathode that leverages 3D covalent binding sites and chemical adsorption environment to offer dissolution-limiting and diffusion-blocking functions of S species is reported. By employing this architecture, the coin cell exhibits excellent cycling stability and an exceptional specific capacity of 1444.3 mA h g-1 (13 mA h cm-2), and the pouch cell configuration manifests a noteworthy areal capacity exceeding 11 mA h cm-2. This performance is coupled with excellent flexibility, demonstrated through consecutive bending cycle tests, even at a sulfur loading of 9.00 mg cm-2. This study lays the foundation for the development of flexible Li-S batteries with increased loading capacities and exceptional performance.
Collapse
Affiliation(s)
- Qianyi Guo
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chao Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Jian Shang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yu Yang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chuan Xie
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yufeng Luo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Mingming Rong
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yi Pei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yuan Gao
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- State Key Laboratory for Ultra-Precision Machining Technology, Research Institute for Smart Energy, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214544] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Cao Y, Gu S, Han J, Yang QH, Lv W. The Catalyst Design for Lithium-Sulfur Batteries: Roles and Routes. CHEM REC 2022; 22:e202200124. [PMID: 35675916 DOI: 10.1002/tcr.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
Lithium-sulfur battery is a promising candidate for next-generation high energy density batteries due to its ultrahigh theoretical energy density. However, it suffers from low sulfur utilization, fast capacity decay, and the notorious "shuttle effect" of lithium polysulfides (LiPSs) due to the sluggish reaction kinetics, which severely restrict its practical applications. Using the electrocatalyst can accelerate the redox reactions between sulfur, LiPSs and Li2 S and suppress the shuttling of LiPSs, and thus, it is a promising strategy to solve the above problems, enabling the battery with high energy density and long cycling stability. In this personal account, we discuss the catalyst design for lithium-sulfur batteries according to the sulfur reduction reaction (SRR) and sulfur evolution reaction (SER) in the discharging and charging processes. The catalytic effects for each step in SRR and SER are highlighted and the homogenous catalysts, the selective catalysts, and the bidirectional catalysts are discussed, which can help guide the rational design of the catalysts and practical applications of lithium-sulfur batteries.
Collapse
Affiliation(s)
- Yun Cao
- Shenzhen Key Laboratory for Graphene-based Materials, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Sichen Gu
- Shenzhen Key Laboratory for Graphene-based Materials, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.,Department of Material Science and Engineering, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Junwei Han
- Shenzhen Key Laboratory for Graphene-based Materials, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Wei Lv
- Shenzhen Key Laboratory for Graphene-based Materials, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Li Y, Sun K, Cheng P, Li J, Liu D, He D. The Synergy of La
2
O
3
Nanoparticles and Graphene for Advanced Li‐S Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202104328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yiding Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
| | - Kai Sun
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
| | - Pu Cheng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
| | - Jianjun Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
| | - Dequan Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
| | - Deyan He
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
| |
Collapse
|
5
|
Gao K, Xu R, Chen Y, Zhang Z, Shao J, Ji H, Zhang L, Yi S, Chen D, Hu J, Gao Y. TiO2-carbon porous nanostructures for immobilization and conversion of polysulfides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Wang C, Huang J, Li J, Cao L, Wang H, Kajiyoshi K. Regulating positions of TiO2 on TiO2/biomass carbon composite surface to enhance conversion abilities of polysulfides. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Zhou Z, Chen Z, Zhao Y, Lv H, Wei H, Chen B, Gu Z, Wang Y. A flame-retardant polyimide interlayer with polysulfide lithium traps and fast redox conversion towards safety and high sulfur utilization Li-S batteries. NANOSCALE 2022; 14:700-714. [PMID: 34937072 DOI: 10.1039/d1nr07173d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years and following the progress made in lithium-ion battery technology, substantial efforts have been devoted to developing practical lithium-sulfur (Li-S) batteries for next-generation commercial energy storage devices. The practical application of Li-S batteries is still limited by dramatically reduced capacities, cycling instabilities, and safety issues arising from flammable components. In this study, we designed and fabricated a flame-retardant, multifunctional interlayer which integrated electroconductive networks, lithium polysulfide (LiPS) traps and catalysts to significantly elevate the electrochemical performance and safety of pristine Li-S batteries. The LiPS adsorptive polymer polyimide (PI) constrains polysulfides to the cathode region and effectively suppresses the shuttle effect. Coralloid PI/multiwalled carbon nanotube (MCNT) compounds provide plentiful reaction sites for active materials. The catalytic Ni on the metal skeleton surface notably promotes Li+ diffusion, lowers the redox overpotential and accelerates LiPS conversion, which improves the redox kinetics associated with sulfur-related species and significantly elevates sulfur utilization. At different current densities of 0.2 C and 0.5 C, impressive initial discharge capacities of 1275.3 mA h g-1 and 1190.9 mA h g-1 are attainable respectively, with high capacity retentions of 80.3% and 78.6% over 600 cycles. Besides, the multifunctional interlayer can also act as a flame-retardant layer to promote the safety of Li-S batteries by inhibiting the spread of fire. This study provides a feasible and prospective strategy that adopts a multifunctional interlayer to develop Li-S batteries with higher capacities, longer cycling lives and safer working conditions.
Collapse
Affiliation(s)
- Zhiyu Zhou
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China.
- Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054 Chengdu, China
| | - Zexiang Chen
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China.
- Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054 Chengdu, China
| | - Yang Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China.
- Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054 Chengdu, China
| | - Huifang Lv
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China.
- Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054 Chengdu, China
| | - Hualiang Wei
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China.
- Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054 Chengdu, China
| | - Bingbing Chen
- Department of Energy Science and Engineering, Nanjing Tech University, 210009, Nanjing, China
| | - Zengjie Gu
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, No. 108, Yanxing Road, 730000, Lanzhou, China
| | - Yan Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China.
- Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054 Chengdu, China
| |
Collapse
|
8
|
Rozhin P, Charitidis C, Marchesan S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules 2021; 26:4084. [PMID: 34279424 PMCID: PMC8271590 DOI: 10.3390/molecules26134084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Self-assembling peptides and carbon nanomaterials have attracted great interest for their respective potential to bring innovation in the biomedical field. Combination of these two types of building blocks is not trivial in light of their very different physico-chemical properties, yet great progress has been made over the years at the interface between these two research areas. This concise review will analyze the latest developments at the forefront of research that combines self-assembling peptides with carbon nanostructures for biological use. Applications span from tissue regeneration, to biosensing and imaging, and bioelectronics.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
| | - Costas Charitidis
- School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 157 80 Athens, Greece;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| |
Collapse
|
9
|
Zhang H, Yang L, Zhang P, Lu C, Sha D, Yan B, He W, Zhou M, Zhang W, Pan L, Sun Z. MXene-Derived Ti n O 2 n- 1 Quantum Dots Distributed on Porous Carbon Nanosheets for Stable and Long-Life Li-S Batteries: Enhanced Polysulfide Mediation via Defect Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008447. [PMID: 33864408 DOI: 10.1002/adma.202008447] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Indexed: 05/21/2023]
Abstract
The application of Li-S batteries has been hindered by the shuttling behavior and sluggish reaction kinetics of polysulfides. Here an effective polysulfide immobilizer and catalytic promoter is developed by proposing oxygen-vacancy-rich Tin O2 n -1 quantum dots (OV-Tn QDs) decorated on porous carbon nanosheets (PCN), which are modulated using Ti3 C2 Tx MXene as starting materials. The Tn QDs not only confine polysulfides through strong chemisorption but also promote polysulfide conversion via redox-active catalysis. The introduction of oxygen vacancies further boosts the immobilization and conversion of polysulfides by lowering the adsorption energy and shortening the bond lengths. The PCN provides a physical polysulfide confinement as well as a flexible substrate preventing OV-Tn QDs from aggregation. Moreover, the two building blocks are conductive, thereby effectively improving the electron/charge transfer. Finally, the ultrasmall size of QDs along with the porous structure endows OV-Tn QDs@PCN with large specific surface area and pore volume, affording adequate space for S loading and volume expansion. Therefore, the OV-Tn QDs@PCN/S delivers a high S loading (79.1 wt%), good rate capability (672 mA h g-1 at 2 C), and excellent long-term cyclability (88% capacity retention over 1000 cycles at 2 C). It also exhibits good Li+ storage under high S-mass loading and lean electrolyte.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Li Yang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Peigen Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Chengjie Lu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Bingzhen Yan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wei He
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Min Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wei Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
10
|
Sui J, Chen X, Li Y, Peng W, Zhang F, Fan X. MXene derivatives: synthesis and applications in energy convention and storage. RSC Adv 2021; 11:16065-16082. [PMID: 35481204 PMCID: PMC9031603 DOI: 10.1039/d0ra10018h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Transition metal carbides or nitrides (MXene) have shown promising applications in energy convention and storage (ECS), owing to their high conductivity and adjustable surface functional groups. In the past several years, many MXene derivatives with different structures have been successfully prepared and their impressive performance demonstrated in ECS. This review summarizes the progress in the synthesis of MXene and typical Ti3C2T x MXene derivatives with different morphologies, including 0D quantum dots, 1D nanoribbons, 2D nanosheets and 3D nanoflowers. The mechanisms involved and their performance in photocatalysis, electrocatalysis and rechargeable batteries are also discussed. Furthermore, the challenges of MXene derivatives in ECS are also proposed.
Collapse
Affiliation(s)
- Jinyi Sui
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Xifan Chen
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
11
|
Zhou Y, Gao H, Ning S, Lin J, Wen J, Kang X. Polypyrrole/Graphene Composite Interlayer: High Redox Kinetics of Polysulfides and Electrochemical Performance of Lithium–Sulfur Batteries Enabled by Unique Pyrrolic Nitrogen Sites. ChemElectroChem 2021. [DOI: 10.1002/celc.202100365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Zhou
- New Energy Research Institute, School of Environment and Energy South China University of Technology 382 East Waihuan Road Guangzhou 510006 China
| | - Hongcheng Gao
- New Energy Research Institute, School of Environment and Energy South China University of Technology 382 East Waihuan Road Guangzhou 510006 China
| | - Shunlian Ning
- New Energy Research Institute, School of Environment and Energy South China University of Technology 382 East Waihuan Road Guangzhou 510006 China
| | - Jiaju Lin
- New Energy Research Institute, School of Environment and Energy South China University of Technology 382 East Waihuan Road Guangzhou 510006 China
| | - Jingbo Wen
- New Energy Research Institute, School of Environment and Energy South China University of Technology 382 East Waihuan Road Guangzhou 510006 China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy South China University of Technology 382 East Waihuan Road Guangzhou 510006 China
| |
Collapse
|